Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
from src.constants import MethodTypes | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
model_info_dict = [] | |
# Init column for the model properties | |
model_info_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
model_info_dict.append(["model", ColumnContent, ColumnContent("model", "markdown", True, never_hidden=True)]) | |
# Model information | |
model_info_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, True)]) | |
# model_info_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
# model_info_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
model_info_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, True)]) | |
model_info_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, True)]) | |
model_info_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, True)]) | |
model_info_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, True)]) | |
model_info_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
# model_info_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
ModelInfoColumn = make_dataclass("ModelInfoColumn", model_info_dict, frozen=True) | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
model_type_emoji = { | |
MethodTypes.foundational: "🟢", | |
MethodTypes.finetuned: "🔶", | |
MethodTypes.automl: "🤖", | |
MethodTypes.boosted_tree: "🌴", | |
MethodTypes.other: "❓", | |
} | |
def _make_model_details(name: str): | |
return ModelDetails(name=f"{model_type_emoji[name]} {name}", symbol=model_type_emoji[name]) | |
class ModelType(Enum): | |
T1 = _make_model_details(MethodTypes.foundational) | |
T2 = _make_model_details(MethodTypes.finetuned) | |
T3 = _make_model_details(MethodTypes.automl) | |
T4 = _make_model_details(MethodTypes.boosted_tree) | |
T5 = _make_model_details(MethodTypes.other) | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if MethodTypes.foundational in type or model_type_emoji[MethodTypes.foundational] in type: | |
return ModelType.T1 | |
if MethodTypes.finetuned in type or model_type_emoji[MethodTypes.finetuned] in type: | |
return ModelType.T2 | |
if MethodTypes.automl in type or model_type_emoji[MethodTypes.automl] in type: | |
return ModelType.T3 | |
if MethodTypes.boosted_tree in type or model_type_emoji[MethodTypes.boosted_tree] in type: | |
return ModelType.T4 | |
if MethodTypes.other in type or model_type_emoji[MethodTypes.other] in type: | |
return ModelType.T5 | |
return ModelType.T5 | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
return Precision.Unknown | |
# Column selection | |
MODEL_INFO_COLS = [c.name for c in fields(ModelInfoColumn) if not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |