TabasumDev commited on
Commit
b165b5d
Β·
verified Β·
1 Parent(s): 5ae9056

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +167 -144
app.py CHANGED
@@ -278,157 +278,180 @@
278
  # ###################################################################################
279
 
280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
  import streamlit as st
282
- import os
283
- import re
284
- import torch
285
- from transformers import AutoModelForCausalLM, AutoTokenizer
286
  from PyPDF2 import PdfReader
287
- from peft import get_peft_model, LoraConfig, TaskType
288
-
289
- # βœ… Force CPU execution for Hugging Face Spaces
290
- device = torch.device("cpu")
291
-
292
- # πŸ”Ή Load IBM Granite Model (CPU-Compatible)
293
- MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
294
-
295
- model = AutoModelForCausalLM.from_pretrained(
296
- MODEL_NAME,
297
- device_map="cpu", # Force CPU execution
298
- torch_dtype=torch.float32 # Use float32 since Hugging Face runs on CPU
299
- )
300
-
301
- tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
302
-
303
- # πŸ”Ή Apply LoRA Fine-Tuning Configuration
304
- lora_config = LoraConfig(
305
- r=8,
306
- lora_alpha=32,
307
- target_modules=["q_proj", "v_proj"],
308
- lora_dropout=0.1,
309
- bias="none",
310
- task_type=TaskType.CAUSAL_LM
311
- )
312
- model = get_peft_model(model, lora_config)
313
- model.eval()
314
-
315
- # πŸ›  Function to Read & Extract Text from PDFs
316
- def read_files(file):
317
- file_context = ""
318
- try:
319
- reader = PdfReader(file)
320
- for page in reader.pages:
321
- text = page.extract_text()
322
- if text:
323
- file_context += text + "\n"
324
- except Exception as e:
325
- st.error(f"⚠️ Error reading PDF file: {e}")
326
- return ""
327
-
328
- return file_context.strip()
329
-
330
- # πŸ›  Function to Format AI Prompts
331
- def format_prompt(system_msg, user_msg, file_context=""):
332
- if file_context:
333
- system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
334
- return [
335
- {"role": "system", "content": system_msg},
336
- {"role": "user", "content": user_msg}
337
- ]
338
-
339
- # πŸ›  Function to Generate AI Responses
340
- def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
341
- st.write("πŸ” Generating response...") # Debugging message
342
- model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
343
-
344
- with torch.no_grad():
345
- output = model.generate(
346
- **model_inputs,
347
- max_new_tokens=max_tokens,
348
- do_sample=True,
349
- top_p=top_p,
350
- temperature=temperature,
351
- num_return_sequences=1,
352
- pad_token_id=tokenizer.eos_token_id
353
- )
354
-
355
- response = tokenizer.decode(output[0], skip_special_tokens=True)
356
- st.write("βœ… Response Generated!") # Debugging message
357
- return response
358
-
359
- # πŸ›  Function to Clean AI Output
360
- def post_process(text):
361
- cleaned = re.sub(r'ζˆ₯+', '', text) # Remove unwanted symbols
362
- lines = cleaned.splitlines()
363
- unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
364
- return "\n".join(unique_lines)
365
-
366
- # πŸ›  Function to Handle RAG with IBM Granite & Streamlit
367
- def granite_simple(prompt, file):
368
- file_context = read_files(file) if file else ""
369
-
370
- # Debugging: Show extracted file content preview
371
- if not file_context:
372
- st.error("⚠️ No content extracted from the PDF. It might be a scanned image or encrypted.")
373
- return "Error: No content found in the document."
374
-
375
- system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
376
-
377
- messages = format_prompt(system_message, prompt, file_context)
378
- input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
379
-
380
- response = generate_response(input_text)
381
- return post_process(response)
382
-
383
- # πŸ”Ή Streamlit UI
384
- def main():
385
- st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ")
386
-
387
- st.title("πŸ“œ AI-Powered Contract Analysis Tool")
388
- st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
389
-
390
- # πŸ”Ή Sidebar Settings
391
- with st.sidebar:
392
- st.header("βš™οΈ Settings")
393
- max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
394
- top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
395
- temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
396
-
397
- # πŸ”Ή File Upload Section
398
- uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")
399
-
400
- if uploaded_file:
401
- st.success(f"βœ… File uploaded successfully! File Name: {uploaded_file.name}")
402
- st.write(f"**File Size:** {uploaded_file.size / 1024:.2f} KB")
403
-
404
- # Debugging: Show extracted text preview
405
- pdf_text = read_files(uploaded_file)
406
- if pdf_text:
407
- st.write("**Extracted Sample Text:**")
408
- st.code(pdf_text[:500]) # Show first 500 characters
409
- else:
410
- st.error("⚠️ No readable text found in the document.")
411
 
412
- st.write("Click the button below to analyze the contract.")
413
 
414
- # Force button to always render
415
- st.markdown('<style>div.stButton > button {display: block; width: 100%;}</style>', unsafe_allow_html=True)
416
 
417
- if st.button("πŸ” Analyze Document"):
418
- with st.spinner("Analyzing contract document... ⏳"):
419
- final_answer = granite_simple(
420
- "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges.",
421
- uploaded_file
422
- )
423
 
424
- # πŸ”Ή Display Analysis Result
425
- st.subheader("πŸ“‘ Analysis Result")
426
- st.write(final_answer)
427
-
428
- # πŸ”₯ Run Streamlit App
429
- if __name__ == '__main__':
430
- main()
 
 
431
 
 
 
432
 
433
 
434
  # ###################################################################################
 
278
  # ###################################################################################
279
 
280
 
281
+ # import streamlit as st
282
+ # import os
283
+ # import re
284
+ # import torch
285
+ # from transformers import AutoModelForCausalLM, AutoTokenizer
286
+ # from PyPDF2 import PdfReader
287
+ # from peft import get_peft_model, LoraConfig, TaskType
288
+
289
+ # # βœ… Force CPU execution for Hugging Face Spaces
290
+ # device = torch.device("cpu")
291
+
292
+ # # πŸ”Ή Load IBM Granite Model (CPU-Compatible)
293
+ # MODEL_NAME = "ibm-granite/granite-3.1-2b-instruct"
294
+
295
+ # model = AutoModelForCausalLM.from_pretrained(
296
+ # MODEL_NAME,
297
+ # device_map="cpu", # Force CPU execution
298
+ # torch_dtype=torch.float32 # Use float32 since Hugging Face runs on CPU
299
+ # )
300
+
301
+ # tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
302
+
303
+ # # πŸ”Ή Apply LoRA Fine-Tuning Configuration
304
+ # lora_config = LoraConfig(
305
+ # r=8,
306
+ # lora_alpha=32,
307
+ # target_modules=["q_proj", "v_proj"],
308
+ # lora_dropout=0.1,
309
+ # bias="none",
310
+ # task_type=TaskType.CAUSAL_LM
311
+ # )
312
+ # model = get_peft_model(model, lora_config)
313
+ # model.eval()
314
+
315
+ # # πŸ›  Function to Read & Extract Text from PDFs
316
+ # def read_files(file):
317
+ # file_context = ""
318
+ # try:
319
+ # reader = PdfReader(file)
320
+ # for page in reader.pages:
321
+ # text = page.extract_text()
322
+ # if text:
323
+ # file_context += text + "\n"
324
+ # except Exception as e:
325
+ # st.error(f"⚠️ Error reading PDF file: {e}")
326
+ # return ""
327
+
328
+ # return file_context.strip()
329
+
330
+ # # πŸ›  Function to Format AI Prompts
331
+ # def format_prompt(system_msg, user_msg, file_context=""):
332
+ # if file_context:
333
+ # system_msg += f" The user has provided a contract document. Use its context to generate insights, but do not repeat or summarize the document itself."
334
+ # return [
335
+ # {"role": "system", "content": system_msg},
336
+ # {"role": "user", "content": user_msg}
337
+ # ]
338
+
339
+ # # πŸ›  Function to Generate AI Responses
340
+ # def generate_response(input_text, max_tokens=1000, top_p=0.9, temperature=0.7):
341
+ # st.write("πŸ” Generating response...") # Debugging message
342
+ # model_inputs = tokenizer([input_text], return_tensors="pt").to(device)
343
+
344
+ # with torch.no_grad():
345
+ # output = model.generate(
346
+ # **model_inputs,
347
+ # max_new_tokens=max_tokens,
348
+ # do_sample=True,
349
+ # top_p=top_p,
350
+ # temperature=temperature,
351
+ # num_return_sequences=1,
352
+ # pad_token_id=tokenizer.eos_token_id
353
+ # )
354
+
355
+ # response = tokenizer.decode(output[0], skip_special_tokens=True)
356
+ # st.write("βœ… Response Generated!") # Debugging message
357
+ # return response
358
+
359
+ # # πŸ›  Function to Clean AI Output
360
+ # def post_process(text):
361
+ # cleaned = re.sub(r'ζˆ₯+', '', text) # Remove unwanted symbols
362
+ # lines = cleaned.splitlines()
363
+ # unique_lines = list(dict.fromkeys([line.strip() for line in lines if line.strip()]))
364
+ # return "\n".join(unique_lines)
365
+
366
+ # # πŸ›  Function to Handle RAG with IBM Granite & Streamlit
367
+ # def granite_simple(prompt, file):
368
+ # file_context = read_files(file) if file else ""
369
+
370
+ # # Debugging: Show extracted file content preview
371
+ # if not file_context:
372
+ # st.error("⚠️ No content extracted from the PDF. It might be a scanned image or encrypted.")
373
+ # return "Error: No content found in the document."
374
+
375
+ # system_message = "You are IBM Granite, a legal AI assistant specializing in contract analysis."
376
+
377
+ # messages = format_prompt(system_message, prompt, file_context)
378
+ # input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
379
+
380
+ # response = generate_response(input_text)
381
+ # return post_process(response)
382
+
383
+ # # πŸ”Ή Streamlit UI
384
+ # def main():
385
+ # st.set_page_config(page_title="Contract Analysis AI", page_icon="πŸ“œ")
386
+
387
+ # st.title("πŸ“œ AI-Powered Contract Analysis Tool")
388
+ # st.write("Upload a contract document (PDF) for a detailed AI-driven legal and technical analysis.")
389
+
390
+ # # πŸ”Ή Sidebar Settings
391
+ # with st.sidebar:
392
+ # st.header("βš™οΈ Settings")
393
+ # max_tokens = st.slider("Max Tokens", 50, 1000, 250, 50)
394
+ # top_p = st.slider("Top P (sampling)", 0.1, 1.0, 0.9, 0.1)
395
+ # temperature = st.slider("Temperature (creativity)", 0.1, 1.0, 0.7, 0.1)
396
+
397
+ # # πŸ”Ή File Upload Section
398
+ # uploaded_file = st.file_uploader("πŸ“‚ Upload a contract document (PDF)", type="pdf")
399
+
400
+ # if uploaded_file:
401
+ # st.success(f"βœ… File uploaded successfully! File Name: {uploaded_file.name}")
402
+ # st.write(f"**File Size:** {uploaded_file.size / 1024:.2f} KB")
403
+
404
+ # # Debugging: Show extracted text preview
405
+ # pdf_text = read_files(uploaded_file)
406
+ # if pdf_text:
407
+ # st.write("**Extracted Sample Text:**")
408
+ # st.code(pdf_text[:500]) # Show first 500 characters
409
+ # else:
410
+ # st.error("⚠️ No readable text found in the document.")
411
+
412
+ # st.write("Click the button below to analyze the contract.")
413
+
414
+ # # Force button to always render
415
+ # st.markdown('<style>div.stButton > button {display: block; width: 100%;}</style>', unsafe_allow_html=True)
416
+
417
+ # if st.button("πŸ” Analyze Document"):
418
+ # with st.spinner("Analyzing contract document... ⏳"):
419
+ # final_answer = granite_simple(
420
+ # "Perform a detailed technical analysis of the attached contract document, highlighting potential risks, legal pitfalls, compliance issues, and areas where contractual terms may lead to future disputes or operational challenges.",
421
+ # uploaded_file
422
+ # )
423
+
424
+ # # πŸ”Ή Display Analysis Result
425
+ # st.subheader("πŸ“‘ Analysis Result")
426
+ # st.write(final_answer)
427
+
428
+ # # πŸ”₯ Run Streamlit App
429
+ # if __name__ == '__main__':
430
+ # main()
431
+
432
  import streamlit as st
 
 
 
 
433
  from PyPDF2 import PdfReader
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
434
 
435
+ st.title("πŸ“‚ PDF Upload Debugger")
436
 
437
+ uploaded_file = st.file_uploader("Upload a PDF", type="pdf")
 
438
 
439
+ if uploaded_file:
440
+ st.success(f"βœ… File uploaded: {uploaded_file.name}")
441
+ st.write(f"πŸ“ File Size: {uploaded_file.size / 1024:.2f} KB")
 
 
 
442
 
443
+ try:
444
+ reader = PdfReader(uploaded_file)
445
+ text = "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
446
+
447
+ if text.strip():
448
+ st.subheader("Extracted Text (First 500 characters)")
449
+ st.code(text[:500]) # Show a preview of the text
450
+ else:
451
+ st.error("⚠️ No text found. The document might be scanned or encrypted.")
452
 
453
+ except Exception as e:
454
+ st.error(f"⚠️ Error reading PDF: {e}")
455
 
456
 
457
  # ###################################################################################