Spaces:
Runtime error
Runtime error
File size: 6,000 Bytes
01523b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
cnt_agents: &cnt_agents 2
max_turn: &max_turn 3
max_inner_turns: &max_inner_turns 3
prompts:
role_assigner_prepend_prompt: &role_assigner_prepend_prompt |-
role_assigner_append_prompt: &role_assigner_append_prompt |-
# Role Description
You are the leader of a group of experts, now you need to generate a response based on the text:
${task_description}
You can recruit ${cnt_critic_agents} expert in different fields. What experts will you recruit to better generate an accurate solution?
# Response Format Guidance
You should respond with a list of expert description. For example:
1. an electrical engineer specified in the filed of xxx
2. an economist who is good at xxx
3. a lawyer with a good knowledge of xxx
...
You don't have to give the reason.
solver_prepend_prompt: &solver_prepend_prompt |-
You are ${role_description}. Below is a chat history:
${task_description}
And below is the discussion about what the next system response should be:
solver_append_prompt: &solver_append_prompt |-
Now based on these information, please give a better next system response. Your response should contain only one system response beginning with "System: ". Do not give any additional information.
critic_prepend_prompt: &critic_prepend_prompt |-
You are ${role_description}. You are in a discussion group, aiming to generate a system response to the following chat history:
${task_description}
Below is the discussion about what the next system response should be:
critic_append_prompt: &critic_append_prompt |-
# Response Format Guidance
- If you thinks the latest response given above is perfect, respond using the following format:
Decision: (set it to "Agree")
Response: (your response on why you think it is perfect)
- If you think it is flawed, give your advice use the following output format:
Decision: (set it to "Disagree")
Response: (explain why you disagree and give your advice)
Based on your knowledge in your field, do you agree that this solution is a good response to the chat history?
manager_prompt: &manager_prompt |-
executor_prepend_prompt: &executor_prepend_prompt |-
executor_append_prompt: &executor_append_prompt |-
evaluator_prepend_prompt: &evaluator_prepend_prompt |-
evaluator_append_prompt: &evaluator_append_prompt |-
# Role Description
You are an experienced dialogue teacher. As a good teacher, you carefully assess the given system response based on the chat history. When the response is flawed, you should patiently teach the system how to give better response.
# Response Format Guidance
You must respond in the following format:
Engaging: (a score between 0 and 10)
Relevant: (a score between 0 and 10)
Semantically Appropriate: (a score between 0 and 10)
Advice: (your advice on how to improve the response)
# Chat History
${task_description}
# Next System Response
${solution}
# Your Task
Now carefully check the system's response, and give your opinion.
name: pipeline
environment:
env_type: task-basic
max_turn: *max_turn
rule:
role_assigner:
type: role_description
cnt_agents: *cnt_agents
decision_maker:
type: vertical-solver-first
max_inner_turns: *max_inner_turns
executor:
type: none
evaluator:
type: basic
agents:
- #role_assigner_agent:
agent_type: role_assigner
name: role assigner
max_retry: 1000
prepend_prompt_template: *role_assigner_prepend_prompt
append_prompt_template: *role_assigner_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 512
output_parser:
type: role_assigner
- #solver_agent:
agent_type: solver
name: Planner
max_retry: 1000
max_history: 10
prepend_prompt_template: *solver_prepend_prompt
append_prompt_template: *solver_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 1024
output_parser:
type: responsegen
- #critic_agents:
agent_type: critic
name: Critic 1
max_retry: 1000
max_history: 10
role_description: |-
Waiting to be assigned.
prepend_prompt_template: *critic_prepend_prompt
append_prompt_template: *critic_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 1024
output_parser:
type: responsegen-critic-2
- #executor_agent:
agent_type: executor
name: Executor
max_retry: 1000
prepend_prompt_template: *executor_prepend_prompt
append_prompt_template: *executor_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: gpt-3.5-turbo
temperature: 0
max_tokens: 1024
output_parser:
type: responsegen
- #evaluator_agent:
agent_type: evaluator
name: Evaluator
max_retry: 1000
role_description: |-
Evaluator
prepend_prompt_template: *evaluator_prepend_prompt
append_prompt_template: *evaluator_append_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: gpt-3.5-turbo
temperature: 0.3
max_tokens: 1024
output_parser:
type: responsegen-evaluator
dimensions:
- Engaging
- Relevant
- Semantically Appropriate
- #manager_agent:
agent_type: manager
name: Manager
max_retry: 1000
prompt_template: *manager_prompt
memory:
memory_type: chat_history
llm:
llm_type: gpt-3.5-turbo
model: "gpt-3.5-turbo"
temperature: 0
max_tokens: 1024
output_parser:
type: humaneval-manager
|