TKM03 commited on
Commit
79ee477
·
verified ·
1 Parent(s): 8b658df

testing version

Browse files
Files changed (1) hide show
  1. app.py +4 -22
app.py CHANGED
@@ -16,48 +16,31 @@ processor = ViTImageProcessor.from_pretrained("prithivMLmods/Deep-Fake-Detector-
16
  logger.info(f"Model label mapping: {model.config.id2label}")
17
 
18
  def detect(image, confidence_threshold=0.5):
19
- """Detect deepfake content using prithivMLmods/Deep-Fake-Detector-v2-Model"""
20
  if image is None:
21
  raise gr.Error("Please upload an image to analyze")
22
 
23
  try:
24
- # Convert Gradio image (filepath) to PIL Image
25
  pil_image = Image.open(image).convert("RGB")
26
-
27
- # Resize to match ViT input requirements (224x224)
28
  pil_image = pil_image.resize((224, 224), Image.Resampling.LANCZOS)
29
-
30
- # Preprocess the image
31
  inputs = processor(images=pil_image, return_tensors="pt")
32
 
33
- # Perform inference
34
  with torch.no_grad():
35
  outputs = model(**inputs)
36
  logits = outputs.logits
37
  probabilities = torch.softmax(logits, dim=1)[0]
38
 
39
- # Get confidence scores
40
- confidence_real = probabilities[0].item() * 100 # Assuming 0 is Real
41
- confidence_fake = probabilities[1].item() * 100 # Assuming 1 is Fake
42
 
43
- # Verify label mapping from model config
44
  id2label = model.config.id2label
45
  predicted_class = torch.argmax(logits, dim=1).item()
46
  predicted_label = id2label[predicted_class]
47
-
48
- # Adjust prediction based on threshold and label
49
  threshold_predicted = "Fake" if confidence_fake / 100 >= confidence_threshold else "Real"
50
  confidence_score = max(confidence_real, confidence_fake)
51
 
52
- # Log detailed output
53
- logger.info(f"Logits: {logits.tolist()}")
54
- logger.info(f"Probabilities - Real: {confidence_real:.1f}%, Fake: {confidence_fake:.1f}%")
55
- logger.info(f"Predicted Class: {predicted_class}, Label: {predicted_label}")
56
- logger.info(f"Threshold ({confidence_threshold}): {threshold_predicted}")
57
-
58
- # Prepare output
59
  overall = f"{confidence_score:.1f}% Confidence ({threshold_predicted})"
60
- aigen = f"{confidence_fake:.1f}% (AI-Generated Content Likelihood)"
61
  deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
62
 
63
  return overall, aigen, deepfake
@@ -65,7 +48,6 @@ def detect(image, confidence_threshold=0.5):
65
  except Exception as e:
66
  logger.error(f"Error during analysis: {str(e)}")
67
  raise gr.Error(f"Analysis error: {str(e)}")
68
-
69
  # Custom CSS (unchanged)
70
  custom_css = """
71
  .container {
 
16
  logger.info(f"Model label mapping: {model.config.id2label}")
17
 
18
  def detect(image, confidence_threshold=0.5):
 
19
  if image is None:
20
  raise gr.Error("Please upload an image to analyze")
21
 
22
  try:
 
23
  pil_image = Image.open(image).convert("RGB")
 
 
24
  pil_image = pil_image.resize((224, 224), Image.Resampling.LANCZOS)
 
 
25
  inputs = processor(images=pil_image, return_tensors="pt")
26
 
 
27
  with torch.no_grad():
28
  outputs = model(**inputs)
29
  logits = outputs.logits
30
  probabilities = torch.softmax(logits, dim=1)[0]
31
 
32
+ confidence_real = probabilities[0].item() * 100
33
+ confidence_fake = probabilities[1].item() * 100
 
34
 
 
35
  id2label = model.config.id2label
36
  predicted_class = torch.argmax(logits, dim=1).item()
37
  predicted_label = id2label[predicted_class]
 
 
38
  threshold_predicted = "Fake" if confidence_fake / 100 >= confidence_threshold else "Real"
39
  confidence_score = max(confidence_real, confidence_fake)
40
 
41
+ # Differentiate outputs (example heuristic)
 
 
 
 
 
 
42
  overall = f"{confidence_score:.1f}% Confidence ({threshold_predicted})"
43
+ aigen = f"{confidence_fake * 0.9:.1f}% (AI-Generated Content Likelihood)" # Arbitrary scaling
44
  deepfake = f"{confidence_fake:.1f}% (Face Manipulation Likelihood)"
45
 
46
  return overall, aigen, deepfake
 
48
  except Exception as e:
49
  logger.error(f"Error during analysis: {str(e)}")
50
  raise gr.Error(f"Analysis error: {str(e)}")
 
51
  # Custom CSS (unchanged)
52
  custom_css = """
53
  .container {