Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import math | |
class EncoderProjectorConcat(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.k = config.speech_encoder_ds_rate | |
self.encoder_dim = config.speech_encoder_hidden_size | |
self.llm_dim = config.hidden_size | |
self.linear1 = nn.Linear(self.encoder_dim * self.k, 2048) | |
self.relu = nn.ReLU() | |
self.linear2 = nn.Linear(2048, config.hidden_size) | |
embed_std = 1 / math.sqrt(config.hidden_size) | |
self.speech_newline = nn.Parameter( | |
torch.randn(config.hidden_size) * embed_std | |
) | |
self.speech_begin = nn.Parameter( | |
torch.randn(config.hidden_size) * embed_std | |
) | |
self.speech_end = nn.Parameter( | |
torch.randn(config.hidden_size) * embed_std | |
) | |
def forward(self, x): | |
batch_size, seq_len, dim = x.size() | |
num_frames_to_discard = seq_len % self.k | |
if num_frames_to_discard > 0: | |
x = x[:, :-num_frames_to_discard, :] | |
seq_len = x.size(1) | |
x = x.contiguous() | |
x = x.view(batch_size, seq_len // self.k, dim * self.k) | |
x = self.linear1(x) | |
x = self.relu(x) | |
x = self.linear2(x) | |
x = torch.cat([ | |
x, | |
self.speech_newline.reshape(1, 1, -1).expand(batch_size, 1, -1).to(x.dtype) | |
], dim=1) | |
begin = self.speech_begin.reshape(1, -1).to(x.dtype) | |
end = self.speech_end.reshape(1, -1).to(x.dtype) | |
x = x.flatten(0, 1) | |
x = torch.cat([begin, x, end], dim=0) | |
# x = x.flatten(0, 1) | |
return x |