File size: 39,579 Bytes
1938217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
import math
import warnings
from dataclasses import dataclass
from functools import partial
from typing import (
    Callable,
    Dict,
    Final,
    List,
    Literal,
    Optional,
    Sequence,
    Set,
    Tuple,
    Type,
    Union,
)

from torch.utils.checkpoint import checkpoint
import torch
import torch.nn as nn
import torch.nn.functional as F
try:
    from timm.layers import (
        AttentionPoolLatent,
        DropPath,
        LayerType,
        Mlp,
        PatchDropout,
        PatchEmbed,
        resample_abs_pos_embed,
    )
    from timm.models._manipulate import checkpoint_seq, named_apply
except:
    print('Wrong timm version')

from flash_attn import flash_attn_func, flash_attn_varlen_func

from typing import Optional

import logging
import torch
import torch.nn as nn
import torch.nn.functional as F

import deepspeed
import os
if 'LOAD_VISION_EARLY' in os.environ:
    print("LOAD_VISION_EARLY is set")
    LOAD_VISION_EARLY = True
else:
    LOAD_VISION_EARLY = False


if 'SKIP_LOAD_VIT' in os.environ:
    print("SKIP_LOAD_VIT is set")
    SKIP_LOAD_VIT = True
else:
    SKIP_LOAD_VIT = False

if 'VIT_WITH_GRAD' in os.environ:
    print("VIT_WITH_GRAD is set")
    VIT_WITH_GRAD = True
else:
    VIT_WITH_GRAD = False


if 'FIX_SIZE' in os.environ:
    print("FIX_SIZE is set")
    FIX_SIZE = True
else:
    FIX_SIZE = False


if 'ANYRES_SPLIT' in os.environ:
    ANYRES_SPLIT = int(os.environ['ANYRES_SPLIT'])
    print(f"ANYRES_SPLIT is set as {ANYRES_SPLIT}")
else:
    ANYRES_SPLIT = None


if 'FORCE_NO_DOWNSAMPLE' in os.environ:
    print("FORCE_NO_DOWNSAMPLE is set")
    FORCE_NO_DOWNSAMPLE = True
else:
    FORCE_NO_DOWNSAMPLE = False

if 'EVAL_72B' in os.environ:
    print("EVAL_72B is set")
    EVAL_72B = True
else:
    EVAL_72B = False

def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn(
            "mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
            "The distribution of values may be incorrect.",
            stacklevel=2,
        )

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)  # noqa: E741
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.0))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
    # type: (torch.Tensor, float, float, float, float) -> torch.Tensor
    r"""The original timm.models.layers.weight_init.trunc_normal_ can not handle bfloat16 yet, here we first
    convert the tensor to float32, apply the trunc_normal_() in float32, and then convert it back to its orignal dtype.
    Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn
    from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """

    with torch.no_grad():
        dtype = tensor.dtype
        tensor_fp32 = tensor.float()
        tensor_fp32 = _no_grad_trunc_normal_(tensor_fp32, mean, std, a, b)
        tensor_dtype = tensor_fp32.to(dtype=dtype)
        tensor.copy_(tensor_dtype)


def init_weights(self):
    if self.pos_embed is not None:
        trunc_normal_(self.pos_embed, std=self.pos_embed.shape[1] ** -0.5)
    trunc_normal_(self.latent, std=self.latent_dim**-0.5)


def init_weights_vit_timm(module: nn.Module, name: str = "") -> None:
    """ViT weight initialization, original timm impl (for reproducibility)"""
    if isinstance(module, nn.Linear):
        trunc_normal_(module.weight, std=0.02)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif hasattr(module, "init_weights"):
        module.init_weights()


class Attention(nn.Module):
    fused_attn: Final[bool]

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        attn_drop: float = 0.0,
        proj_drop: float = 0.0,
        norm_layer: nn.Module = nn.LayerNorm,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, "dim should be divisible by num_heads"
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5
        # self.fused_attn = use_fused_attn()
        self.fused_attn = True

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop) if proj_drop > 0.0 else nn.Identity()

    def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor:
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, self.head_dim)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = qkv.unbind(0)
        q, k = self.q_norm(q), self.k_norm(k)

        if cu_slens is not None:
            q = q.permute(0, 2, 1, 3)   # B, num_heads, N, C -> B, N, num_heads, C
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            max_seqlen = torch.max(cu_slens[1:] - cu_slens[:-1]).item()
            x = flash_attn_varlen_func(
                q.squeeze(0),
                k.squeeze(0),
                v.squeeze(0),
                cu_seqlens_q=cu_slens,
                cu_seqlens_k=cu_slens,
                max_seqlen_q=max_seqlen,
                max_seqlen_k=max_seqlen,
                softmax_scale=self.scale,
                causal=False,
                )

            x = x.reshape(B, N, -1)
            x = self.proj(x)
            x = self.proj_drop(x)

        else:
            q = q.permute(0, 2, 1, 3)   # B, num_heads, N, C -> B, N, num_heads, C
            k = k.permute(0, 2, 1, 3)
            v = v.permute(0, 2, 1, 3)
            x = flash_attn_func(q, k, v, softmax_scale=self.scale) # -> b, n, h, c

            x = x.reshape(B, N, -1)
            x = self.proj(x)
            x = self.proj_drop(x)
        # if self.fused_attn:
        #     x = F.scaled_dot_product_attention(
        #         q,
        #         k,
        #         v,
        #         dropout_p=self.attn_drop.p if self.training else 0.0,
        #     )
        # else:
        #     q = q * self.scale
        #     attn = q @ k.transpose(-2, -1)
        #     attn = attn.softmax(dim=-1)
        #     attn = self.attn_drop(attn)
        #     x = attn @ v

        # x = x.transpose(1, 2).reshape(B, N, C)
        # x = self.proj(x)
        # x = self.proj_drop(x)
        return x


class LayerScale(nn.Module):
    def __init__(
        self,
        dim: int,
        init_values: float = 1e-5,
        inplace: bool = False,
    ) -> None:
        super().__init__()
        self.inplace = inplace
        self.gamma = nn.Parameter(init_values * torch.ones(dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return x.mul_(self.gamma) if self.inplace else x * self.gamma


class Block(nn.Module):
    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = False,
        qk_norm: bool = False,
        proj_drop: float = 0.0,
        attn_drop: float = 0.0,
        init_values: Optional[float] = None,
        drop_path: float = 0.0,
        act_layer: nn.Module = nn.GELU,
        norm_layer: nn.Module = nn.LayerNorm,
        mlp_layer: nn.Module = Mlp,
    ) -> None:
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_norm=qk_norm,
            attn_drop=attn_drop,
            proj_drop=proj_drop,
            norm_layer=norm_layer,
        )
        self.ls1 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim)
        self.mlp = mlp_layer(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=proj_drop,
        )
        self.ls2 = (
            LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
        )
        self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x: torch.Tensor, cu_slens=None) -> torch.Tensor:
        x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), cu_slens=cu_slens)))
        x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
        return x


class VisionTransformer(nn.Module):
    """Vision Transformer

    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
        - https://arxiv.org/abs/2010.11929
    """

    dynamic_img_size: Final[bool]

    def __init__(
        self,
        img_size: Union[int, Tuple[int, int]] = 224,
        patch_size: Union[int, Tuple[int, int]] = 16,
        in_chans: int = 3,
        num_classes: int = 1000,
        global_pool: Literal["", "avg", "token", "map"] = "token",
        embed_dim: int = 768,
        depth: int = 12,
        num_heads: int = 12,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        qk_norm: bool = False,
        init_values: Optional[float] = None,
        class_token: bool = True,
        no_embed_class: bool = False,
        reg_tokens: int = 0,
        pre_norm: bool = False,
        fc_norm: Optional[bool] = None,
        dynamic_img_size: bool = False,
        dynamic_img_pad: bool = False,
        drop_rate: float = 0.0,
        pos_drop_rate: float = 0.0,
        patch_drop_rate: float = 0.0,
        proj_drop_rate: float = 0.0,
        attn_drop_rate: float = 0.0,
        drop_path_rate: float = 0.0,
        weight_init: Literal["skip", "jax", "jax_nlhb", "moco", ""] = "",
        embed_layer: Callable = PatchEmbed,
        norm_layer: Optional[LayerType] = None,
        act_layer: Optional[LayerType] = None,
        strict_img_size: bool = False,
        block_fn: Type[nn.Module] = Block,
        mlp_layer: Type[nn.Module] = Mlp,
        ignore_head: bool = False,
        add_patch2x2: bool = False,
    ) -> None:
        """
        Args:
            img_size: Input image size.
            patch_size: Patch size.
            in_chans: Number of image input channels.
            num_classes: Mumber of classes for classification head.
            global_pool: Type of global pooling for final sequence (default: 'token').
            embed_dim: Transformer embedding dimension.
            depth: Depth of transformer.
            num_heads: Number of attention heads.
            mlp_ratio: Ratio of mlp hidden dim to embedding dim.
            qkv_bias: Enable bias for qkv projections if True.
            init_values: Layer-scale init values (layer-scale enabled if not None).
            class_token: Use class token.
            no_embed_class: Don't include position embeddings for class (or reg) tokens.
            reg_tokens: Number of register tokens.
            fc_norm: Pre head norm after pool (instead of before), if None, enabled when global_pool == 'avg'.
            drop_rate: Head dropout rate.
            pos_drop_rate: Position embedding dropout rate.
            attn_drop_rate: Attention dropout rate.
            drop_path_rate: Stochastic depth rate.
            weight_init: Weight initialization scheme.
            embed_layer: Patch embedding layer.
            norm_layer: Normalization layer.
            act_layer: MLP activation layer.
            block_fn: Transformer block layer.
        """
        super().__init__()
        assert global_pool in ("", "avg", "token", "map")
        assert class_token or global_pool != "token"
        use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
        # norm_layer = get_norm_layer(norm_layer) or partial(nn.LayerNorm, eps=1e-6)
        # act_layer = get_act_layer(act_layer) or nn.GELU
        norm_layer = partial(nn.LayerNorm, eps=1e-6)
        act_layer = nn.GELU

        self.num_classes = num_classes
        self.global_pool = global_pool
        self.num_features = self.embed_dim = (
            embed_dim  # num_features for consistency with other models
        )
        self.num_prefix_tokens = 1 if class_token else 0
        self.num_prefix_tokens += reg_tokens
        self.num_reg_tokens = reg_tokens
        self.has_class_token = class_token
        self.no_embed_class = (
            no_embed_class  # don't embed prefix positions (includes reg)
        )
        self.dynamic_img_size = dynamic_img_size
        self.grad_checkpointing = False
        self.ignore_head = ignore_head

        embed_args = {}
        if dynamic_img_size:
            # flatten deferred until after pos embed
            embed_args.update(dict(strict_img_size=False, output_fmt="NHWC"))
        self.patch_embed = embed_layer(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
            bias=not pre_norm,  # disable bias if pre-norm is used (e.g. CLIP)
            dynamic_img_pad=dynamic_img_pad,
            strict_img_size=strict_img_size,
            **embed_args,
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = (
            nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
        )
        self.reg_token = (
            nn.Parameter(torch.zeros(1, reg_tokens, embed_dim)) if reg_tokens else None
        )
        embed_len = (
            num_patches if no_embed_class else num_patches + self.num_prefix_tokens
        )
        self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)


        # deepspeed.zero.register_external_parameter(self, self.pos_embed)
        # deepspeed.zero.register_external_parameter(self, self.patch_embed.proj.weight)
        # deepspeed.zero.register_external_parameter(self, self.patch_embed.proj.bias)
        # print(self.patch_embed.state_dict().keys())


        self.pos_drop = nn.Dropout(p=pos_drop_rate)
        if patch_drop_rate > 0:
            self.patch_drop = PatchDropout(
                patch_drop_rate,
                num_prefix_tokens=self.num_prefix_tokens,
            )
        else:
            self.patch_drop = nn.Identity()
        self.norm_pre = norm_layer(embed_dim) if pre_norm else nn.Identity()

        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, depth)
        ]  # stochastic depth decay rule
        self.blocks = nn.Sequential(
            *[
                block_fn(
                    dim=embed_dim,
                    num_heads=num_heads,
                    mlp_ratio=mlp_ratio,
                    qkv_bias=qkv_bias,
                    qk_norm=qk_norm,
                    init_values=init_values,
                    proj_drop=proj_drop_rate,
                    attn_drop=attn_drop_rate,
                    drop_path=dpr[i],
                    norm_layer=norm_layer,
                    act_layer=act_layer,
                    mlp_layer=mlp_layer,
                )
                for i in range(depth)
            ]
        )


        if add_patch2x2:
            if add_patch2x2 == 'v2':
                self.downsample = nn.Sequential(
                    nn.Conv2d(embed_dim, embed_dim*2, kernel_size=2, stride=2),
                    nn.GELU(),
                    nn.Conv2d(embed_dim*2, embed_dim*4, 1)
                )
            else:
                mid_dim = embed_dim * 2
                self.downsample = nn.Sequential(
                    nn.Conv2d(embed_dim, mid_dim, kernel_size=2, stride=2),
                    nn.GELU(),
                    nn.Conv2d(mid_dim, mid_dim, 1)
            )

        else:
            self.downsample = None


        # self.norm = norm_layer(embed_dim) if not use_fc_norm else nn.Identity()

        # # Classifier Head
        # if global_pool == "map":
        #     AttentionPoolLatent.init_weights = init_weights
        #     self.attn_pool = AttentionPoolLatent(
        #         self.embed_dim,
        #         num_heads=num_heads,
        #         mlp_ratio=mlp_ratio,
        #         norm_layer=norm_layer,
        #     )
        # else:
        #     self.attn_pool = None
        # self.fc_norm = norm_layer(embed_dim) if use_fc_norm else nn.Identity()
        # self.head_drop = nn.Dropout(drop_rate)
        # self.head = (
        #     nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        # )

        # if weight_init != "skip":
        #     self.init_weights(weight_init)

    def init_weights(self, mode: Literal["jax", "jax_nlhb", "moco", ""] = "") -> None:
        assert mode in ("jax", "jax_nlhb", "moco", "")
        # head_bias = -math.log(self.num_classes) if "nlhb" in mode else 0.0
        trunc_normal_(self.pos_embed, std=0.02)
        if self.cls_token is not None:
            nn.init.normal_(self.cls_token, std=1e-6)
        named_apply(init_weights_vit_timm, self)

    @torch.jit.ignore
    def no_weight_decay(self) -> Set:
        return {"pos_embed", "cls_token", "dist_token"}

    @torch.jit.ignore
    def group_matcher(self, coarse: bool = False) -> Dict:
        return dict(
            stem=r"^cls_token|pos_embed|patch_embed",  # stem and embed
            blocks=[(r"^blocks\.(\d+)", None), (r"^norm", (99999,))],
        )

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable: bool = True) -> None:
        self.grad_checkpointing = enable

    @torch.jit.ignore
    def get_classifier(self) -> nn.Module:
        return self.head

    def reset_classifier(self, num_classes: int, global_pool=None) -> None:
        self.num_classes = num_classes
        if global_pool is not None:
            assert global_pool in ("", "avg", "token", "map")
            if global_pool == "map" and self.attn_pool is None:
                assert (
                    False
                ), "Cannot currently add attention pooling in reset_classifier()."
            elif global_pool != "map " and self.attn_pool is not None:
                self.attn_pool = None  # remove attention pooling
            self.global_pool = global_pool
        self.head = (
            nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
        )

    def rescale_positional_embedding(self, out_size):
        h, w = out_size
        pos_embed_shape = int((self.pos_embed.shape[1]) ** 0.5)
        if (h, w) == (pos_embed_shape, pos_embed_shape):
            return self.pos_embed
        rescaled_positional_embedding = \
            self.pos_embed.new_zeros(1, h*w, self.pos_embed.shape[2])
        pe_2d = self.pos_embed[0].T.contiguous().view(1, -1, pos_embed_shape, pos_embed_shape)
        pe_2d = F.interpolate(pe_2d, out_size, mode='bilinear', align_corners=False).view(-1, h*w)
        rescaled_positional_embedding[0] = pe_2d.T.contiguous()
        return rescaled_positional_embedding

    def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
        if self.dynamic_img_size:
            B, H, W, C = x.shape
            pos_embed = resample_abs_pos_embed(
                self.pos_embed,
                (H, W),
                num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
            )
            x = x.view(B, -1, C)
        else:
            pos_embed = self.pos_embed

        to_cat = []
        if self.cls_token is not None:
            to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
        if self.reg_token is not None:
            to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))

        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + pos_embed
            if to_cat:
                x = torch.cat(to_cat + [x], dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if to_cat:
                x = torch.cat(to_cat + [x], dim=1)
            x = x + pos_embed

        return self.pos_drop(x)

    def _intermediate_layers(
        self,
        x: torch.Tensor,
        n: Union[int, Sequence] = 1,
    ) -> List[torch.Tensor]:
        outputs, num_blocks = [], len(self.blocks)
        take_indices = set(
            range(num_blocks - n, num_blocks) if isinstance(n, int) else n
        )

        # forward pass
        x = self.patch_embed(x)
        x = self._pos_embed(x)
        x = self.patch_drop(x)
        x = self.norm_pre(x)
        for i, blk in enumerate(self.blocks):
            x = blk(x)
            if i in take_indices:
                outputs.append(x)

        return outputs

    def get_intermediate_layers(
        self,
        x: torch.Tensor,
        n: Union[int, Sequence] = 1,
        reshape: bool = False,
        return_prefix_tokens: bool = False,
        norm: bool = False,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
        """Intermediate layer accessor (NOTE: This is a WIP experiment).
        Inspired by DINO / DINOv2 interface
        """
        # take last n blocks if n is an int, if in is a sequence, select by matching indices
        outputs = self._intermediate_layers(x, n)
        if norm:
            outputs = [self.norm(out) for out in outputs]
        prefix_tokens = [out[:, 0 : self.num_prefix_tokens] for out in outputs]
        outputs = [out[:, self.num_prefix_tokens :] for out in outputs]

        if reshape:
            grid_size = self.patch_embed.grid_size
            outputs = [
                out.reshape(x.shape[0], grid_size[0], grid_size[1], -1)
                .permute(0, 3, 1, 2)
                .contiguous()
                for out in outputs
            ]

        if return_prefix_tokens:
            return tuple(zip(outputs, prefix_tokens))
        return tuple(outputs)

    def forward_features_list(self, x_list):
        x_all = []
        image_sizes = []
        for x in x_list:
            if EVAL_72B:
                x = x.to('cuda:0')
            bs, _, h, w = x.shape

            # fix patch size=14 in datasets 
            pad_h = (self.patch_embed.patch_size[0] - h % self.patch_embed.patch_size[0]) % self.patch_embed.patch_size[0]
            pad_w = (self.patch_embed.patch_size[1] - w % self.patch_embed.patch_size[1]) % self.patch_embed.patch_size[1]
            x = F.pad(x, (0, pad_w, 0, pad_h))

            bs, _, h, w = x.shape

            h = h // self.patch_embed.patch_size[0]
            w = w // self.patch_embed.patch_size[1]

            x = self.patch_embed(x)
            # x = self._pos_embed(x)
            x = x + self.rescale_positional_embedding(out_size=(h, w))
            x = self.patch_drop(x)
            x = self.norm_pre(x)
            x_all.append(x)
            image_sizes.append((h, w))

        slen = [xi.size(1) for xi in x_all]
        x = torch.cat(x_all, dim=1)

        cu_indices = [0, ]
        for i in slen:
            cu_indices.append(cu_indices[-1] + i)

        cu_slens = torch.tensor(cu_indices, dtype=torch.int32).to(x.device)
        for idx, blk in enumerate(self.blocks):
            if self.grad_checkpointing and not torch.jit.is_scripting():
                x = checkpoint(blk, x, cu_slens, use_reentrant=True)
            else:
                x = blk(x, cu_slens=cu_slens)
        feats = x.split(slen, dim=1) #[(1, slen, c)]

        if self.downsample is not None:
            new_feats = []
            new_sizes = []
            for f, s in zip(feats, image_sizes):
                h, w = s
                b, n, c = f.size()
                f = f.reshape(b, h, w, c).permute(0, 3, 1, 2)
                f = self.downsample(f)
                b, c, h, w = f.size()
                f = f.permute(0, 2, 3, 1).reshape(b, h*w, c)
                new_feats.append(f)
                new_sizes.append((h, w))
            return new_feats, new_sizes


        return feats, image_sizes

    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        if EVAL_72B:
            x = x.to('cuda:0')
        bs, _, h, w = x.shape
        h = h // self.patch_embed.patch_size[0]
        w = w // self.patch_embed.patch_size[1]
        
        x = self.patch_embed(x)
        # x = self._pos_embed(x)
        x = x + self.rescale_positional_embedding(out_size=(h, w))
        x = self.patch_drop(x)
        x = self.norm_pre(x)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)

        if self.downsample is not None:
            b, n, c = x.size()
            x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
            x = self.downsample(x)
            b, c, h, w = x.size()
            x = x.permute(0, 2, 3, 1).reshape(b, h*w, c)
            new_feats = x
            new_sizes = (h, w)
            return new_feats, new_sizes

        return x, (h, w)

    def forward_head(self, x: torch.Tensor, pre_logits: bool = False) -> torch.Tensor:
        x = self.norm(x)
        if self.attn_pool is not None:
            x = self.attn_pool(x)
        elif self.global_pool == "avg":
            x = x[:, self.num_prefix_tokens :].mean(dim=1)
        elif self.global_pool:
            x = x[:, 0]  # class token
        x = self.fc_norm(x)
        x = self.head_drop(x)
        return x if pre_logits else self.head(x)

    def forward(self, x, cal_attn_pool=False):
        if type(x) is list:
            x, image_sizes = self.forward_features_list(x)
            return x, image_sizes, None
        else:
            x, image_sizes = self.forward_features(x)
            return x, image_sizes, None

@dataclass
class SigLIPVisionCfg:
    width: int = 1152
    layers: Union[Tuple[int, int, int, int], int] = 27
    heads: int = 16
    patch_size: int = 14
    image_size: Union[Tuple[int, int], int] = 336
    global_pool: str = "map"
    mlp_ratio: float = 3.7362
    class_token: bool = False
    num_classes: int = 0
    use_checkpoint: bool = False


SigLIP_MODEL_CONFIG = {
    "siglip_so400m_patch14_384": {
        "image_size": 384,
        "patch_size": 14,
        "width": 1152,
        "layers": 27,
        "heads": 16,
        "mlp_ratio": 3.7362,
        "global_pool": "map",
        "use_checkpoint": False,
    },
    "siglip_so400m_patch16_384": {
        "image_size": 384,
        "patch_size": 16,
        "width": 1152,
        "layers": 27,
        "heads": 16,
        "mlp_ratio": 3.7362,
        "global_pool": "map",
        "use_checkpoint": False,
    },
    "siglip_so400m_patch14_224": {
        "image_size": 224,
        "patch_size": 14,
        "width": 1152,
        "layers": 27,
        "heads": 16,
        "mlp_ratio": 3.7362,
        "global_pool": "map",
        "use_checkpoint": False,
    },
    "siglip_large_patch16_384": {
        "image_size": 384,
        "patch_size": 16,
        "width": 1024,
        "layers": 24,
        "heads": 16,
        "mlp_ratio": 4,
        "global_pool": "map",
        "use_checkpoint": False,
    },
}


def resize_evaclip_pos_embed(model: VisionTransformer, interpolation: str = 'bicubic'):
    # interpolate position embedding
    orig_size = 24
    new_size = 128
    pos_tokens = model.pos_embed
    pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, model.embed_dim).permute(0, 3, 1, 2)
    pos_tokens = torch.nn.functional.interpolate(
        pos_tokens, size=(new_size, new_size), mode=interpolation, align_corners=False)
    pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
    model.pos_embed = nn.Parameter(pos_tokens, requires_grad=True)
    return model 

def create_siglip_vit(
    model_name: str = "siglip_so400m_patch14_384",
    image_size: int = 384,
    select_layer: int = -1,
    path: str = "",
    gradient_checkpointing: bool = False,
    **kwargs,
):
    assert (
        model_name in SigLIP_MODEL_CONFIG.keys()
    ), f"model name should be in {SigLIP_MODEL_CONFIG.keys()}"

    vision_cfg = SigLIPVisionCfg(**SigLIP_MODEL_CONFIG[model_name])

    if select_layer <= 0:
        layers = min(vision_cfg.layers, vision_cfg.layers + select_layer + 1)
    else:
        layers = min(vision_cfg.layers, select_layer)

    
    
    if 'patch2x2' or 'patch4x4' in path:
        add_patch2x2 = True
    else:
        add_patch2x2 = False

    if 'patch4x4pool' in path or 'patch2x2from4x4' in path:
        add_patch2x2 = 'v2'

    if FORCE_NO_DOWNSAMPLE:
        add_patch2x2 = False

    model = VisionTransformer(
        img_size=2048,
        patch_size=16,
        embed_dim=vision_cfg.width,
        depth=layers,
        num_heads=vision_cfg.heads,
        mlp_ratio=vision_cfg.mlp_ratio,
        class_token=vision_cfg.class_token,
        global_pool=vision_cfg.global_pool,
        dynamic_img_pad=False,
        strict_img_size=False,
        ignore_head=kwargs.get("ignore_head", False),
        weight_init=kwargs.get("weight_init", "skip"),
        num_classes=0,
        add_patch2x2=add_patch2x2
    )

    if not SKIP_LOAD_VIT:
        if path is not None and os.path.exists(path):
            ckpt = path
        else:
            raise ValueError(f"Model checkpoint not found at {path}")
        state_dict = torch.load(ckpt, map_location="cpu")
        print('loading vision backbone from', path)

        if 'genli' in path:
            new_sd = {}
            for k in state_dict.keys():
                if k.startswith('base_model.model.model.vision_tower.vision_tower.'):
                    new_k = k.replace('base_model.model.model.vision_tower.vision_tower.', '')
                    new_sd[new_k] = state_dict[k]
                
                if add_patch2x2:
                    if k.startswith('base_model.model.model.mm_projector.proj'):
                        new_k = k.replace('base_model.model.model.mm_projector.proj', 'downsample')
                        new_sd[new_k] = state_dict[k]

        elif 'distill' in path:
            new_sd = {}
            state_dict = state_dict['model']
            for k in state_dict.keys():
                if k.startswith('vision_tower.'):
                    new_k = k.replace('vision_tower.', '')
                    new_sd[new_k] = state_dict[k]
        else:
            raise NotImplementedError
        msg = model.load_state_dict(new_sd, strict=False)
        print(msg)
    
    else:
        print("#### Skip loading vision backbone")

    if gradient_checkpointing:
        model.set_grad_checkpointing(True)
    return model

from transformers import CLIPImageProcessor
import torch.distributed as dist

class SigLIPViTAnysizeWrapper(nn.Module):
    def __init__(self, vision_tower, path, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.args = args
        self.path = path

        self.select_layer = -1
        if self.select_layer < -1: self.select_layer += 1
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        self.output_dim = 1152
        if not FORCE_NO_DOWNSAMPLE:
            if 'patch2x2' or 'patch4x4' in path:
                self.output_dim = 1152*2
            
            if 'patch4x4pool' in path or 'patch2x2from4x4' in path:
                self.output_dim = 1152*4

        if not delay_load or LOAD_VISION_EARLY:
            self.load_model()
        elif getattr(args, "unfreeze_mm_vision_tower", False):
            # TODO: better detector is needed.
            print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
            self.load_model()

    def load_model(self, device_map=None):
        if self.is_loaded:
            print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
            return
        
        self.image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
        if self.args.mm_projector_type == "conv_mlp" or self.args.mm_projector_type == "multipath_conv_mlp" or self.args.mm_projector_type == "multipath_conv_mlp_woconv":
            self.image_processor.crop_size['height'] = 384
            self.image_processor.crop_size['width'] = 384
            self.image_processor.size['shortest_edge'] = 384
            print("Resizeing clip processor to 384...")
        self.image_processor.image_mean = [0.5, 0.5, 0.5]
        self.image_processor.image_std = [0.5, 0.5, 0.5]
        print("Loading vision model...")
        if VIT_WITH_GRAD:
            self.vision_tower = create_siglip_vit(path=self.path, model_name='siglip_so400m_patch16_384',
                                                  gradient_checkpointing=True)
            self.vision_tower.train()
        else:
            self.vision_tower = create_siglip_vit(path=self.path, model_name='siglip_so400m_patch16_384',
                                                  gradient_checkpointing=False)
            for p in self.vision_tower.parameters():
                p.requires_grad = False
            self.vision_tower.eval()
        self.is_loaded = True

    def train(self, mode = True):
        self.training = mode

        if self.is_loaded and not VIT_WITH_GRAD:
            self.vision_tower.eval()

    def split_images(self, images, split_res=512, base_size=32):
        split_images = []
        sub_images_info = []
        for image in images:
            now_sub_images = []
            _, c, h, w = image.shape
            if h * w <= split_res * split_res:
                split_images.append(image)
                sub_images_info.append(
                    (
                        1, 1, 1, h // base_size, w // base_size, [(0, h // base_size, 0, w // base_size)]
                    )
                )
                continue
            nsplit_h = math.ceil(h / split_res)
            nsplit_w = math.ceil(w / split_res)
            sub_h = int(h / nsplit_h  / base_size) * base_size
            sub_w = int(w / nsplit_w / base_size) * base_size
            crop_infos = []
            for i in range(nsplit_h):
                for j in range(nsplit_w):
                    begin_h = i * sub_h
                    begin_w = j * sub_w

                    if i == nsplit_h - 1:
                        end_h = h
                    else:
                        end_h = (i + 1) * sub_h

                    if j == nsplit_w - 1:
                        end_w = w
                    else:
                        end_w = (j + 1) * sub_w

                    assert (end_h - begin_h) % base_size == 0 and (end_w - begin_w) % base_size == 0

                    sub_image = image[:, :, begin_h:end_h, begin_w:end_w]
                    now_sub_images.append(sub_image)
                    crop_infos.append(
                        (begin_h // base_size, end_h // base_size, begin_w // base_size, end_w // base_size)
                    )
            
            split_images += now_sub_images
            sub_images_info.append(
                (
                    len(now_sub_images), nsplit_h, nsplit_w, h // base_size, w // base_size, crop_infos
                )
            )
    
        return split_images, sub_images_info


    def unsplit_images(self, features, sizes, sub_images_info):
        new_features = []
        for feature, size in zip(features, sizes):
            h, w = size
            new_features.append(
                feature.reshape(1, h, w, -1)
            )
        
        fused_images = []
        images_sizes = []
        sub_count = 0
        for n_split, nsplit_h, nsplit_w, total_h, total_w, crop_infos in sub_images_info:
            sub_features = new_features[sub_count:sub_count+n_split]
            sub_count += n_split

            total_feature = new_features[0].new_zeros(1, total_h, total_w, self.hidden_size)
            for feature, (begin_h, end_h, begin_w, end_w) in zip(sub_features, crop_infos):
                total_feature[:, begin_h:end_h, begin_w:end_w] += feature
            
            fused_images.append(total_feature.reshape(1, total_h * total_w, self.hidden_size))
            images_sizes.append((total_h, total_w))
        
        return fused_images, images_sizes



    def forward_func(self, images, force_fix_size=False, cal_attn_pool=False):
        if type(images) is list:
            xs = [x.to(self.dtype) for x in images]
            image_features, img_size, cls_token = self.vision_tower(xs, cal_attn_pool=cal_attn_pool)
            image_features = [x.to(images[0].dtype) for x in image_features]
        
        else:
            image_forward_outs, img_size, cls_token = self.vision_tower(images.to(self.dtype), cal_attn_pool=cal_attn_pool)
            image_features = image_forward_outs.to(images.dtype)
           
        return image_features, img_size, cls_token
    
    def forward(self, images, cal_attn_pool=False):
        if VIT_WITH_GRAD:
            image_features, img_size, cls_token = self.forward_func(images, cal_attn_pool=cal_attn_pool)
            return image_features, img_size
        else:
            with torch.no_grad():
                image_features, img_size, cls_token = self.forward_func(images, cal_attn_pool=cal_attn_pool)
                return image_features, img_size


    @property
    def dummy_feature(self):
        return torch.zeros(1, 1152, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.pos_embed.dtype

    @property
    def device(self):
        return self.vision_tower.pos_embed.device

    @property
    def hidden_size(self):
        return self.output_dim

    @property
    def config(self):
        return type('LLaVAConfigWrapper', (), {
            # 'image_size': 224,
            'patch_size': 16,
        })()