File size: 13,772 Bytes
13ff04b bf2495a 13ff04b bf2495a 87b4a1a bf2495a 13ff04b bf2495a b47e7c8 bf2495a 312ce40 bf2495a 13ff04b bf2495a 13ff04b bf2495a 13ff04b bf2495a 312ce40 13ff04b 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 93b410f 13ff04b 312ce40 bf2495a 13ff04b bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 93b410f 13ff04b 02742e5 bf2495a 13ff04b bf2495a b1a60cd bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 312ce40 882873e 312ce40 bf2495a 312ce40 bf2495a 312ce40 bf2495a 2aa88fe 13ff04b 60efe0d 312ce40 bf2495a 882873e bf2495a 882873e bf2495a 13ff04b bf2495a 13ff04b bf2495a f493b13 bf2495a 312ce40 882873e bf2495a 13ff04b bf2495a 882873e 13ff04b 882873e 13ff04b bf2495a 312ce40 882873e bf2495a 9460541 bf2495a 13ff04b 9460541 312ce40 9460541 13ff04b 9460541 c68ee9c 9460541 1d9fd5c 9460541 1d9fd5c 9460541 1d9fd5c c68ee9c 9460541 312ce40 c68ee9c 312ce40 c68ee9c 312ce40 c68ee9c 312ce40 c68ee9c 312ce40 c68ee9c 312ce40 c68ee9c 9460541 c68ee9c 312ce40 c68ee9c 312ce40 c68ee9c 312ce40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import spaces
from typing import Tuple, Union, List
import os
import numpy as np
from PIL import Image
import torch
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
from colors import ade_palette
from utils import map_colors_rgb
from diffusers import StableDiffusionXLPipeline
import gradio as gr
import gc
device = "cuda"
dtype = torch.float16
css = """
#img-display-container {
max-height: 50vh;
}
#img-display-input {
max-height: 40vh;
}
#img-display-output {
max-height: 40vh;
}
"""
def filter_items(
colors_list: Union[List, np.ndarray],
items_list: Union[List, np.ndarray],
items_to_remove: Union[List, np.ndarray]
) -> Tuple[Union[List, np.ndarray], Union[List, np.ndarray]]:
"""
Filters items and their corresponding colors from given lists, excluding
specified items.
Args:
colors_list: A list or numpy array of colors corresponding to items.
items_list: A list or numpy array of items.
items_to_remove: A list or numpy array of items to be removed.
Returns:
A tuple of two lists or numpy arrays: filtered colors and filtered
items.
"""
filtered_colors = []
filtered_items = []
for color, item in zip(colors_list, items_list):
if item not in items_to_remove:
filtered_colors.append(color)
filtered_items.append(item)
return filtered_colors, filtered_items
def get_segmentation_pipeline(
) -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
"""Method to load the segmentation pipeline
Returns:
Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
"""
image_processor = AutoImageProcessor.from_pretrained(
"openmmlab/upernet-convnext-small"
)
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
"openmmlab/upernet-convnext-small"
)
return image_processor, image_segmentor
@torch.inference_mode()
@spaces.GPU
def segment_image(
image: Image,
image_processor: AutoImageProcessor,
image_segmentor: UperNetForSemanticSegmentation
) -> Image:
"""
Segments an image using a semantic segmentation model.
Args:
image (Image): The input image to be segmented.
image_processor (AutoImageProcessor): The processor to prepare the
image for segmentation.
image_segmentor (UperNetForSemanticSegmentation): The semantic
segmentation model used to identify different segments in the image.
Returns:
Image: The segmented image with each segment colored differently based
on its identified class.
"""
# image_processor, image_segmentor = get_segmentation_pipeline()
pixel_values = image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = image_segmentor(pixel_values)
seg = image_processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
seg_image = Image.fromarray(color_seg).convert('RGB')
return seg_image
def get_depth_pipeline():
feature_extractor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf",
torch_dtype=dtype)
depth_estimator = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf",
torch_dtype=dtype)
return feature_extractor, depth_estimator
@torch.inference_mode()
@spaces.GPU
def get_depth_image(
image: Image,
feature_extractor: AutoImageProcessor,
depth_estimator: AutoModelForDepthEstimation
) -> Image:
image_to_depth = feature_extractor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
depth_map = depth_estimator(**image_to_depth).predicted_depth
width, height = image.size
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1).float(),
size=(height, width),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def resize_dimensions(dimensions, target_size):
"""
Resize PIL to target size while maintaining aspect ratio
If smaller than target size leave it as is
"""
width, height = dimensions
# Check if both dimensions are smaller than the target size
if width < target_size and height < target_size:
return dimensions
# Determine the larger side
if width > height:
# Calculate the aspect ratio
aspect_ratio = height / width
# Resize dimensions
return (target_size, int(target_size * aspect_ratio))
else:
# Calculate the aspect ratio
aspect_ratio = width / height
# Resize dimensions
return (int(target_size * aspect_ratio), target_size)
def flush():
gc.collect()
torch.cuda.empty_cache()
class ControlNetDepthDesignModelMulti:
""" Produces random noise images """
def __init__(self):
""" Initialize your model(s) here """
#os.environ['HF_HUB_OFFLINE'] = "True"
self.seed = 323*111
self.neg_prompt = "window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner"
self.control_items = ["ugly", "ugly"]
self.additional_quality_suffix = "4K, high resolution, photorealistic"
@spaces.GPU
def generate_design(self, empty_room_image: Image, prompt: str, guidance_scale: int = 10, num_steps: int = 50, strength: float =0.9, img_size: int = 640) -> Image:
"""
Given an image.
"""
print(prompt)
flush()
self.generator = torch.Generator(device=device).manual_seed(self.seed)
pos_prompt = prompt + f', {self.additional_quality_suffix}'
orig_w, orig_h = empty_room_image.size
new_width, new_height = resize_dimensions(empty_room_image.size, img_size)
input_image = empty_room_image.resize((new_width, new_height))
real_seg = np.array(segment_image(input_image,
seg_image_processor,
image_segmentor))
unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
unique_colors = [tuple(color) for color in unique_colors]
segment_items = [map_colors_rgb(i) for i in unique_colors]
chosen_colors, segment_items = filter_items(
colors_list=unique_colors,
items_list=segment_items,
items_to_remove=self.control_items
)
mask = np.zeros_like(real_seg)
for color in chosen_colors:
color_matches = (real_seg == color).all(axis=2)
mask[color_matches] = 1
image_np = np.array(input_image)
image = Image.fromarray(image_np).convert("RGB")
mask_image = Image.fromarray((mask * 255).astype(np.uint8)).convert("RGB")
segmentation_cond_image = Image.fromarray(real_seg).convert("RGB")
image_depth = get_depth_image(image, depth_feature_extractor, depth_estimator)
# generate image that would be used as IP-adapter
flush()
new_width_ip = int(new_width / 8) * 8
new_height_ip = int(new_height / 8) * 8
ip_image = guide_pipe(pos_prompt,
num_inference_steps=num_steps,
negative_prompt=self.neg_prompt,
height=new_height_ip,
width=new_width_ip,
generator=[self.generator]).images[0]
flush()
generated_image = pipe(
prompt=pos_prompt,
negative_prompt=self.neg_prompt,
num_inference_steps=num_steps,
strength=strength,
guidance_scale=guidance_scale,
generator=[self.generator],
image=image,
mask_image=mask_image,
ip_adapter_image=ip_image,
control_image=[image_depth, segmentation_cond_image],
controlnet_conditioning_scale=[0.5, 0.5]
).images[0]
flush()
design_image = generated_image.resize(
(orig_w, orig_h), Image.Resampling.LANCZOS
)
return design_image
def create_demo(model):
gr.Markdown("### Stable Design demo")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type='pil', elem_id='img-display-input')
input_text = gr.Textbox(label='Prompt', value="high resolution, clay render style , grayscale", lines=2)
with gr.Accordion('Advanced options', open=False):
num_steps = gr.Slider(label='Steps',
minimum=1,
maximum=50,
value=50,
step=1)
img_size = gr.Slider(label='Image size',
minimum=256,
maximum=768,
value=768,
step=64)
guidance_scale = gr.Slider(label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=10.0,
step=0.1)
seed = gr.Slider(label='Seed',
minimum=-1,
maximum=2147483647,
value=323*111,
step=1,
randomize=True)
strength = gr.Slider(label='Strength',
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.1)
a_prompt = gr.Textbox(
label='Added Prompt',
value="8K, high resolution, photorealistic")
n_prompt = gr.Textbox(
label='Negative Prompt',
value=" low resolution, banner, logo, watermark, deformed, blurry, out of focus, surreal, ugly, beginner")
submit = gr.Button("Submit")
with gr.Column():
design_image = gr.Image(label="Output Mask", elem_id='img-display-output')
def on_submit(image, text, num_steps, guidance_scale, seed, strength, a_prompt, n_prompt, img_size):
model.seed = seed
model.neg_prompt = n_prompt
model.additional_quality_suffix = a_prompt
with torch.no_grad():
out_img = model.generate_design(image, text, guidance_scale=guidance_scale, num_steps=num_steps, strength=strength, img_size=img_size)
return out_img
submit.click(on_submit, inputs=[input_image, input_text, num_steps, guidance_scale, seed, strength, a_prompt, n_prompt, img_size], outputs=design_image)
examples = gr.Examples(examples=[["imgs/bedroom_1.jpg"]],
inputs=[input_image, input_text], cache_examples=False)
controlnet_depth= ControlNetModel.from_pretrained(
"controlnet_depth", torch_dtype=dtype, use_safetensors=True)
controlnet_seg = ControlNetModel.from_pretrained(
"own_controlnet", torch_dtype=dtype, use_safetensors=True)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"SG161222/Realistic_Vision_V5.1_noVAE",
#"models/runwayml--stable-diffusion-inpainting",
controlnet=[controlnet_depth, controlnet_seg],
safety_checker=None,
torch_dtype=dtype
)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
weight_name="ip-adapter_sd15.bin")
pipe.set_ip_adapter_scale(0.4)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
guide_pipe = StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B",
torch_dtype=dtype, use_safetensors=True, variant="fp16")
guide_pipe = guide_pipe.to(device)
seg_image_processor, image_segmentor = get_segmentation_pipeline()
depth_feature_extractor, depth_estimator = get_depth_pipeline()
depth_estimator = depth_estimator.to(device)
def main():
model = ControlNetDepthDesignModelMulti()
print('Models uploaded successfully')
title = "# StableDesign"
description = """
WELCOME
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
create_demo(model)
demo.queue().launch(share=False)
if __name__ == '__main__':
main() |