File size: 19,803 Bytes
92d45d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import math
import random
from typing import Any

import cv2
import numpy as np
import torch
from numpy import ndarray
from torch import Tensor

__all__ = [
    "image_to_tensor", "tensor_to_image",
    "image_resize", "preprocess_one_image",
    "expand_y", "rgb_to_ycbcr", "bgr_to_ycbcr", "ycbcr_to_bgr", "ycbcr_to_rgb",
    "rgb_to_ycbcr_torch", "bgr_to_ycbcr_torch",
    "center_crop", "random_crop", "random_rotate", "random_vertically_flip", "random_horizontally_flip",
]


# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def _cubic(x: Any) -> Any:
    """Implementation of `cubic` function in Matlab under Python language.

    Args:
        x: Element vector.

    Returns:
        Bicubic interpolation

    """
    absx = torch.abs(x)
    absx2 = absx ** 2
    absx3 = absx ** 3
    return (1.5 * absx3 - 2.5 * absx2 + 1) * ((absx <= 1).type_as(absx)) + (
            -0.5 * absx3 + 2.5 * absx2 - 4 * absx + 2) * (
               ((absx > 1) * (absx <= 2)).type_as(absx))


# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def _calculate_weights_indices(in_length: int,
                               out_length: int,
                               scale: float,
                               kernel_width: int,
                               antialiasing: bool) -> [np.ndarray, np.ndarray, int, int]:
    """Implementation of `calculate_weights_indices` function in Matlab under Python language.

    Args:
        in_length (int): Input length.
        out_length (int): Output length.
        scale (float): Scale factor.
        kernel_width (int): Kernel width.
        antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
            Caution: Bicubic down-sampling in PIL uses antialiasing by default.

    Returns:
       weights, indices, sym_len_s, sym_len_e

    """
    if (scale < 1) and antialiasing:
        # Use a modified kernel (larger kernel width) to simultaneously
        # interpolate and antialiasing
        kernel_width = kernel_width / scale

    # Output-space coordinates
    x = torch.linspace(1, out_length, out_length)

    # Input-space coordinates. Calculate the inverse mapping such that 0.5
    # in output space maps to 0.5 in input space, and 0.5 + scale in output
    # space maps to 1.5 in input space.
    u = x / scale + 0.5 * (1 - 1 / scale)

    # What is the left-most pixel that can be involved in the computation?
    left = torch.floor(u - kernel_width / 2)

    # What is the maximum number of pixels that can be involved in the
    # computation?  Note: it's OK to use an extra pixel here; if the
    # corresponding weights are all zero, it will be eliminated at the end
    # of this function.
    p = math.ceil(kernel_width) + 2

    # The indices of the input pixels involved in computing the k-th output
    # pixel are in row k of the indices matrix.
    indices = left.view(out_length, 1).expand(out_length, p) + torch.linspace(0, p - 1, p).view(1, p).expand(
        out_length, p)

    # The weights used to compute the k-th output pixel are in row k of the
    # weights matrix.
    distance_to_center = u.view(out_length, 1).expand(out_length, p) - indices

    # apply cubic kernel
    if (scale < 1) and antialiasing:
        weights = scale * _cubic(distance_to_center * scale)
    else:
        weights = _cubic(distance_to_center)

    # Normalize the weights matrix so that each row sums to 1.
    weights_sum = torch.sum(weights, 1).view(out_length, 1)
    weights = weights / weights_sum.expand(out_length, p)

    # If a column in weights is all zero, get rid of it. only consider the
    # first and last column.
    weights_zero_tmp = torch.sum((weights == 0), 0)
    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 1, p - 2)
        weights = weights.narrow(1, 1, p - 2)
    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
        indices = indices.narrow(1, 0, p - 2)
        weights = weights.narrow(1, 0, p - 2)
    weights = weights.contiguous()
    indices = indices.contiguous()
    sym_len_s = -indices.min() + 1
    sym_len_e = indices.max() - in_length
    indices = indices + sym_len_s - 1
    return weights, indices, int(sym_len_s), int(sym_len_e)


def image_to_tensor(image: ndarray, range_norm: bool, half: bool) -> Tensor:
    """Convert the image data type to the Tensor (NCWH) data type supported by PyTorch

    Args:
        image (np.ndarray): The image data read by ``OpenCV.imread``, the data range is [0,255] or [0, 1]
        range_norm (bool): Scale [0, 1] data to between [-1, 1]
        half (bool): Whether to convert torch.float32 similarly to torch.half type

    Returns:
        tensor (Tensor): Data types supported by PyTorch

    Examples:
        >>> example_image = cv2.imread("lr_image.bmp")
        >>> example_tensor = image_to_tensor(example_image, range_norm=True, half=False)

    """
    # Convert image data type to Tensor data type
    tensor = torch.from_numpy(np.ascontiguousarray(image)).permute(2, 0, 1).float()

    # Scale the image data from [0, 1] to [-1, 1]
    if range_norm:
        tensor = tensor.mul(2.0).sub(1.0)

    # Convert torch.float32 image data type to torch.half image data type
    if half:
        tensor = tensor.half()

    return tensor


def tensor_to_image(tensor: Tensor, range_norm: bool, half: bool) -> Any:
    """Convert the Tensor(NCWH) data type supported by PyTorch to the np.ndarray(WHC) image data type

    Args:
        tensor (Tensor): Data types supported by PyTorch (NCHW), the data range is [0, 1]
        range_norm (bool): Scale [-1, 1] data to between [0, 1]
        half (bool): Whether to convert torch.float32 similarly to torch.half type.

    Returns:
        image (np.ndarray): Data types supported by PIL or OpenCV

    Examples:
        >>> example_image = cv2.imread("lr_image.bmp")
        >>> example_tensor = image_to_tensor(example_image, range_norm=False, half=False)

    """
    if range_norm:
        tensor = tensor.add(1.0).div(2.0)
    if half:
        tensor = tensor.half()

    image = tensor.squeeze(0).permute(1, 2, 0).mul(255).clamp(0, 255).cpu().numpy().astype("uint8")

    return image


def preprocess_one_image(image_path: str, device: torch.device) -> Tensor:
    image = cv2.imread(image_path).astype(np.float32) / 255.0

    # BGR to RGB
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # Convert image data to pytorch format data
    tensor = image_to_tensor(image, False, False).unsqueeze_(0)

    # Transfer tensor channel image format data to CUDA device
    tensor = tensor.to(device=device, memory_format=torch.channels_last, non_blocking=True)

    return tensor


# Code reference `https://github.com/xinntao/BasicSR/blob/master/basicsr/utils/matlab_functions.py`
def image_resize(image: Any, scale_factor: float, antialiasing: bool = True) -> Any:
    """Implementation of `imresize` function in Matlab under Python language.

    Args:
        image: The input image.
        scale_factor (float): Scale factor. The same scale applies for both height and width.
        antialiasing (bool): Whether to apply antialiasing when down-sampling operations.
            Caution: Bicubic down-sampling in `PIL` uses antialiasing by default. Default: ``True``.

    Returns:
        out_2 (np.ndarray): Output image with shape (c, h, w), [0, 1] range, w/o round

    """
    squeeze_flag = False
    if type(image).__module__ == np.__name__:  # numpy type
        numpy_type = True
        if image.ndim == 2:
            image = image[:, :, None]
            squeeze_flag = True
        image = torch.from_numpy(image.transpose(2, 0, 1)).float()
    else:
        numpy_type = False
        if image.ndim == 2:
            image = image.unsqueeze(0)
            squeeze_flag = True

    in_c, in_h, in_w = image.size()
    out_h, out_w = math.ceil(in_h * scale_factor), math.ceil(in_w * scale_factor)
    kernel_width = 4

    # get weights and indices
    weights_h, indices_h, sym_len_hs, sym_len_he = _calculate_weights_indices(in_h, out_h, scale_factor, kernel_width,
                                                                              antialiasing)
    weights_w, indices_w, sym_len_ws, sym_len_we = _calculate_weights_indices(in_w, out_w, scale_factor, kernel_width,
                                                                              antialiasing)
    # process H dimension
    # symmetric copying
    img_aug = torch.FloatTensor(in_c, in_h + sym_len_hs + sym_len_he, in_w)
    img_aug.narrow(1, sym_len_hs, in_h).copy_(image)

    sym_patch = image[:, :sym_len_hs, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, 0, sym_len_hs).copy_(sym_patch_inv)

    sym_patch = image[:, -sym_len_he:, :]
    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(1, inv_idx)
    img_aug.narrow(1, sym_len_hs + in_h, sym_len_he).copy_(sym_patch_inv)

    out_1 = torch.FloatTensor(in_c, out_h, in_w)
    kernel_width = weights_h.size(1)
    for i in range(out_h):
        idx = int(indices_h[i][0])
        for j in range(in_c):
            out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_h[i])

    # process W dimension
    # symmetric copying
    out_1_aug = torch.FloatTensor(in_c, out_h, in_w + sym_len_ws + sym_len_we)
    out_1_aug.narrow(2, sym_len_ws, in_w).copy_(out_1)

    sym_patch = out_1[:, :, :sym_len_ws]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, 0, sym_len_ws).copy_(sym_patch_inv)

    sym_patch = out_1[:, :, -sym_len_we:]
    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
    sym_patch_inv = sym_patch.index_select(2, inv_idx)
    out_1_aug.narrow(2, sym_len_ws + in_w, sym_len_we).copy_(sym_patch_inv)

    out_2 = torch.FloatTensor(in_c, out_h, out_w)
    kernel_width = weights_w.size(1)
    for i in range(out_w):
        idx = int(indices_w[i][0])
        for j in range(in_c):
            out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_w[i])

    if squeeze_flag:
        out_2 = out_2.squeeze(0)
    if numpy_type:
        out_2 = out_2.numpy()
        if not squeeze_flag:
            out_2 = out_2.transpose(1, 2, 0)

    return out_2


def expand_y(image: np.ndarray) -> np.ndarray:
    """Convert BGR channel to YCbCr format,
    and expand Y channel data in YCbCr, from HW to HWC

    Args:
        image (np.ndarray): Y channel image data

    Returns:
        y_image (np.ndarray): Y-channel image data in HWC form

    """
    # Normalize image data to [0, 1]
    image = image.astype(np.float32) / 255.

    # Convert BGR to YCbCr, and extract only Y channel
    y_image = bgr_to_ycbcr(image, only_use_y_channel=True)

    # Expand Y channel
    y_image = y_image[..., None]

    # Normalize the image data to [0, 255]
    y_image = y_image.astype(np.float64) * 255.0

    return y_image


def rgb_to_ycbcr(image: np.ndarray, only_use_y_channel: bool) -> np.ndarray:
    """Implementation of rgb2ycbcr function in Matlab under Python language

    Args:
        image (np.ndarray): Image input in RGB format.
        only_use_y_channel (bool): Extract Y channel separately

    Returns:
        image (np.ndarray): YCbCr image array data

    """
    if only_use_y_channel:
        image = np.dot(image, [65.481, 128.553, 24.966]) + 16.0
    else:
        image = np.matmul(image, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) + [
            16, 128, 128]

    image /= 255.
    image = image.astype(np.float32)

    return image


def bgr_to_ycbcr(image: np.ndarray, only_use_y_channel: bool) -> np.ndarray:
    """Implementation of bgr2ycbcr function in Matlab under Python language.

    Args:
        image (np.ndarray): Image input in BGR format
        only_use_y_channel (bool): Extract Y channel separately

    Returns:
        image (np.ndarray): YCbCr image array data

    """
    if only_use_y_channel:
        image = np.dot(image, [24.966, 128.553, 65.481]) + 16.0
    else:
        image = np.matmul(image, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [
            16, 128, 128]

    image /= 255.
    image = image.astype(np.float32)

    return image


def ycbcr_to_rgb(image: np.ndarray) -> np.ndarray:
    """Implementation of ycbcr2rgb function in Matlab under Python language.

    Args:
        image (np.ndarray): Image input in YCbCr format.

    Returns:
        image (np.ndarray): RGB image array data

    """
    image_dtype = image.dtype
    image *= 255.

    image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
                              [0, -0.00153632, 0.00791071],
                              [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]

    image /= 255.
    image = image.astype(image_dtype)

    return image


def ycbcr_to_bgr(image: np.ndarray) -> np.ndarray:
    """Implementation of ycbcr2bgr function in Matlab under Python language.

    Args:
        image (np.ndarray): Image input in YCbCr format.

    Returns:
        image (np.ndarray): BGR image array data

    """
    image_dtype = image.dtype
    image *= 255.

    image = np.matmul(image, [[0.00456621, 0.00456621, 0.00456621],
                              [0.00791071, -0.00153632, 0],
                              [0, -0.00318811, 0.00625893]]) * 255.0 + [-276.836, 135.576, -222.921]

    image /= 255.
    image = image.astype(image_dtype)

    return image


def rgb_to_ycbcr_torch(tensor: Tensor, only_use_y_channel: bool) -> Tensor:
    """Implementation of rgb2ycbcr function in Matlab under PyTorch

    References from:`https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion`

    Args:
        tensor (Tensor): Image data in PyTorch format
        only_use_y_channel (bool): Extract only Y channel

    Returns:
        tensor (Tensor): YCbCr image data in PyTorch format

    """
    if only_use_y_channel:
        weight = Tensor([[65.481], [128.553], [24.966]]).to(tensor)
        tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
    else:
        weight = Tensor([[65.481, -37.797, 112.0],
                         [128.553, -74.203, -93.786],
                         [24.966, 112.0, -18.214]]).to(tensor)
        bias = Tensor([16, 128, 128]).view(1, 3, 1, 1).to(tensor)
        tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias

    tensor /= 255.

    return tensor


def bgr_to_ycbcr_torch(tensor: Tensor, only_use_y_channel: bool) -> Tensor:
    """Implementation of bgr2ycbcr function in Matlab under PyTorch

    References from:`https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion`

    Args:
        tensor (Tensor): Image data in PyTorch format
        only_use_y_channel (bool): Extract only Y channel

    Returns:
        tensor (Tensor): YCbCr image data in PyTorch format

    """
    if only_use_y_channel:
        weight = Tensor([[24.966], [128.553], [65.481]]).to(tensor)
        tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + 16.0
    else:
        weight = Tensor([[24.966, 112.0, -18.214],
                         [128.553, -74.203, -93.786],
                         [65.481, -37.797, 112.0]]).to(tensor)
        bias = Tensor([16, 128, 128]).view(1, 3, 1, 1).to(tensor)
        tensor = torch.matmul(tensor.permute(0, 2, 3, 1), weight).permute(0, 3, 1, 2) + bias

    tensor /= 255.

    return tensor


def center_crop(image: np.ndarray, image_size: int) -> np.ndarray:
    """Crop small image patches from one image center area.

    Args:
        image (np.ndarray): The input image for `OpenCV.imread`.
        image_size (int): The size of the captured image area.

    Returns:
        patch_image (np.ndarray): Small patch image

    """
    image_height, image_width = image.shape[:2]

    # Just need to find the top and left coordinates of the image
    top = (image_height - image_size) // 2
    left = (image_width - image_size) // 2

    # Crop image patch
    patch_image = image[top:top + image_size, left:left + image_size, ...]

    return patch_image


def random_crop(image: np.ndarray, image_size: int) -> np.ndarray:
    """Crop small image patches from one image.

    Args:
        image (np.ndarray): The input image for `OpenCV.imread`.
        image_size (int): The size of the captured image area.

    Returns:
        patch_image (np.ndarray): Small patch image

    """
    image_height, image_width = image.shape[:2]

    # Just need to find the top and left coordinates of the image
    top = random.randint(0, image_height - image_size)
    left = random.randint(0, image_width - image_size)

    # Crop image patch
    patch_image = image[top:top + image_size, left:left + image_size, ...]

    return patch_image


def random_rotate(image,
                  angles: list,
                  center: tuple[int, int] = None,
                  scale_factor: float = 1.0) -> np.ndarray:
    """Rotate an image by a random angle

    Args:
        image (np.ndarray): Image read with OpenCV
        angles (list): Rotation angle range
        center (optional, tuple[int, int]): High resolution image selection center point. Default: ``None``
        scale_factor (optional, float): scaling factor. Default: 1.0

    Returns:
        rotated_image (np.ndarray): image after rotation

    """
    image_height, image_width = image.shape[:2]

    if center is None:
        center = (image_width // 2, image_height // 2)

    # Random select specific angle
    angle = random.choice(angles)
    matrix = cv2.getRotationMatrix2D(center, angle, scale_factor)
    rotated_image = cv2.warpAffine(image, matrix, (image_width, image_height))

    return rotated_image


def random_horizontally_flip(image: np.ndarray, p: float = 0.5) -> np.ndarray:
    """Flip the image upside down randomly

    Args:
        image (np.ndarray): Image read with OpenCV
        p (optional, float): Horizontally flip probability. Default: 0.5

    Returns:
        horizontally_flip_image (np.ndarray): image after horizontally flip

    """
    if random.random() < p:
        horizontally_flip_image = cv2.flip(image, 1)
    else:
        horizontally_flip_image = image

    return horizontally_flip_image


def random_vertically_flip(image: np.ndarray, p: float = 0.5) -> np.ndarray:
    """Flip an image horizontally randomly

    Args:
        image (np.ndarray): Image read with OpenCV
        p (optional, float): Vertically flip probability. Default: 0.5

    Returns:
        vertically_flip_image (np.ndarray): image after vertically flip

    """
    if random.random() < p:
        vertically_flip_image = cv2.flip(image, 0)
    else:
        vertically_flip_image = image

    return vertically_flip_image