Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,9 +5,49 @@ import io
|
|
5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
6 |
from transformers import AutoModelForQuestionAnswering
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
model = AutoModelForSequenceClassification.from_pretrained(model_name_classification)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name_classification)
|
13 |
|
@@ -19,66 +59,59 @@ tokenizer_qa = AutoTokenizer.from_pretrained(model_name_qa)
|
|
19 |
text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
20 |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
21 |
|
22 |
-
|
23 |
# Streamlit App
|
24 |
-
st.title("News Classification and Q&A")
|
25 |
|
26 |
## ====================== Component 1: News Classification ====================== ##
|
27 |
-
st.header("Classify News Articles")
|
28 |
-
st.markdown("Upload a CSV file with a 'content' column to classify news into categories.")
|
29 |
|
30 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
31 |
|
32 |
if uploaded_file is not None:
|
33 |
try:
|
34 |
-
df = pd.read_csv(uploaded_file, encoding="utf-8")
|
35 |
except UnicodeDecodeError:
|
36 |
df = pd.read_csv(uploaded_file, encoding="ISO-8859-1")
|
37 |
|
38 |
if 'content' not in df.columns:
|
39 |
-
st.error("Error: The uploaded CSV must contain a 'content' column.")
|
40 |
else:
|
41 |
-
st.write("Preview of uploaded data:")
|
42 |
st.dataframe(df.head())
|
43 |
|
44 |
-
# Preprocessing function
|
45 |
def preprocess_text(text):
|
46 |
-
text = text.lower()
|
47 |
-
text = re.sub(r'\s+', ' ', text)
|
48 |
-
text = re.sub(r'[^a-z\s]', '', text)
|
49 |
-
# You don't need tokenization here, as the model tokenizer will handle it
|
50 |
return text
|
51 |
|
52 |
-
|
53 |
-
# Apply preprocessing and classification
|
54 |
df['processed_content'] = df['content'].apply(preprocess_text)
|
55 |
-
|
56 |
-
# Classify each record into one of the five classes
|
57 |
df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown")
|
58 |
|
59 |
# Show results
|
60 |
-
st.write("Classification Results:")
|
61 |
st.dataframe(df[['content', 'class']])
|
62 |
|
63 |
# Provide CSV download
|
64 |
output = io.BytesIO()
|
65 |
df.to_csv(output, index=False, encoding="utf-8-sig")
|
66 |
-
st.download_button(label="Download
|
67 |
|
68 |
## ====================== Component 2: Q&A ====================== ##
|
69 |
-
st.header("Ask a Question About the News")
|
70 |
-
st.markdown("Enter a question and provide a news article to get an answer.")
|
71 |
|
72 |
-
question = st.text_input("Ask a question:")
|
73 |
-
context = st.text_area("Provide the news article or content
|
74 |
|
75 |
if question and context.strip():
|
76 |
-
model_name_qa = "distilbert-base-uncased-distilled-squad"
|
77 |
qa_pipeline = pipeline("question-answering", model=model_name_qa, tokenizer=model_name_qa)
|
78 |
result = qa_pipeline(question=question, context=context)
|
79 |
|
80 |
-
# Check if the result contains an answer
|
81 |
if 'answer' in result and result['answer']:
|
82 |
-
st.
|
83 |
else:
|
84 |
-
st.
|
|
|
5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
6 |
from transformers import AutoModelForQuestionAnswering
|
7 |
|
8 |
+
# Streamlit UI
|
9 |
+
st.set_page_config(page_title="News Classifier & Q&A", layout="wide")
|
10 |
+
st.markdown("""
|
11 |
+
<style>
|
12 |
+
body {
|
13 |
+
background-color: #f4f4f4;
|
14 |
+
color: #333333;
|
15 |
+
font-family: 'Arial', sans-serif;
|
16 |
+
}
|
17 |
+
.stApp {
|
18 |
+
background-color: white;
|
19 |
+
padding: 20px;
|
20 |
+
border-radius: 10px;
|
21 |
+
box-shadow: 2px 2px 10px rgba(0, 0, 0, 0.1);
|
22 |
+
}
|
23 |
+
h1, h2 {
|
24 |
+
color: #ff4b4b;
|
25 |
+
}
|
26 |
+
.stButton>button {
|
27 |
+
background-color: #ff4b4b !important;
|
28 |
+
color: white;
|
29 |
+
font-size: 16px;
|
30 |
+
border-radius: 5px;
|
31 |
+
}
|
32 |
+
.stDownloadButton>button {
|
33 |
+
background-color: #28a745 !important;
|
34 |
+
color: white;
|
35 |
+
font-size: 16px;
|
36 |
+
border-radius: 5px;
|
37 |
+
}
|
38 |
+
.stTextInput>div>div>input {
|
39 |
+
border-radius: 5px;
|
40 |
+
border: 1px solid #ccc;
|
41 |
+
}
|
42 |
+
.stTextArea>div>textarea {
|
43 |
+
border-radius: 5px;
|
44 |
+
border: 1px solid #ccc;
|
45 |
+
}
|
46 |
+
</style>
|
47 |
+
""", unsafe_allow_html=True)
|
48 |
+
|
49 |
+
# Load fine-tuned models and tokenizers
|
50 |
+
model_name_classification = "TAgroup5/news-classification-model"
|
51 |
model = AutoModelForSequenceClassification.from_pretrained(model_name_classification)
|
52 |
tokenizer = AutoTokenizer.from_pretrained(model_name_classification)
|
53 |
|
|
|
59 |
text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
60 |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
61 |
|
|
|
62 |
# Streamlit App
|
63 |
+
st.title("π° News Classification and Q&A π€")
|
64 |
|
65 |
## ====================== Component 1: News Classification ====================== ##
|
66 |
+
st.header("π Classify News Articles")
|
67 |
+
st.markdown("Upload a CSV file with a **'content'** column to classify news into categories.")
|
68 |
|
69 |
+
uploaded_file = st.file_uploader("π Choose a CSV file", type="csv")
|
70 |
|
71 |
if uploaded_file is not None:
|
72 |
try:
|
73 |
+
df = pd.read_csv(uploaded_file, encoding="utf-8")
|
74 |
except UnicodeDecodeError:
|
75 |
df = pd.read_csv(uploaded_file, encoding="ISO-8859-1")
|
76 |
|
77 |
if 'content' not in df.columns:
|
78 |
+
st.error("β Error: The uploaded CSV must contain a 'content' column.")
|
79 |
else:
|
80 |
+
st.write("β
Preview of uploaded data:")
|
81 |
st.dataframe(df.head())
|
82 |
|
83 |
+
# Preprocessing function
|
84 |
def preprocess_text(text):
|
85 |
+
text = text.lower()
|
86 |
+
text = re.sub(r'\s+', ' ', text)
|
87 |
+
text = re.sub(r'[^a-z\s]', '', text)
|
|
|
88 |
return text
|
89 |
|
|
|
|
|
90 |
df['processed_content'] = df['content'].apply(preprocess_text)
|
|
|
|
|
91 |
df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown")
|
92 |
|
93 |
# Show results
|
94 |
+
st.write("π Classification Results:")
|
95 |
st.dataframe(df[['content', 'class']])
|
96 |
|
97 |
# Provide CSV download
|
98 |
output = io.BytesIO()
|
99 |
df.to_csv(output, index=False, encoding="utf-8-sig")
|
100 |
+
st.download_button(label="π₯ Download Classified News", data=output.getvalue(), file_name="classified_news.csv", mime="text/csv")
|
101 |
|
102 |
## ====================== Component 2: Q&A ====================== ##
|
103 |
+
st.header("π¬ Ask a Question About the News")
|
104 |
+
st.markdown("Enter a question and provide a news article to get an AI-generated answer.")
|
105 |
|
106 |
+
question = st.text_input("β Ask a question:")
|
107 |
+
context = st.text_area("π° Provide the news article or content:", height=150)
|
108 |
|
109 |
if question and context.strip():
|
110 |
+
model_name_qa = "distilbert-base-uncased-distilled-squad"
|
111 |
qa_pipeline = pipeline("question-answering", model=model_name_qa, tokenizer=model_name_qa)
|
112 |
result = qa_pipeline(question=question, context=context)
|
113 |
|
|
|
114 |
if 'answer' in result and result['answer']:
|
115 |
+
st.success(f"β
Answer: {result['answer']}")
|
116 |
else:
|
117 |
+
st.warning("β οΈ No answer found in the provided content.")
|