TAgroup5 commited on
Commit
e245042
Β·
verified Β·
1 Parent(s): 3006ac5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -66
app.py CHANGED
@@ -5,8 +5,7 @@ import io
5
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
6
  from transformers import AutoModelForQuestionAnswering
7
 
8
-
9
- # Load fine-tuned models and tokenizers for both functions
10
  model_name_classification = "TAgroup5/news-classification-model" # Replace with the correct model name
11
  model = AutoModelForSequenceClassification.from_pretrained(model_name_classification)
12
  tokenizer = AutoTokenizer.from_pretrained(model_name_classification)
@@ -17,68 +16,81 @@ tokenizer_qa = AutoTokenizer.from_pretrained(model_name_qa)
17
 
18
  # Initialize pipelines
19
  text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
20
- qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
21
-
22
-
23
- # Streamlit App
24
- st.title("News Classification and Q&A")
25
-
26
- ## ====================== Component 1: News Classification ====================== ##
27
- st.header("Classify News Articles")
28
- st.markdown("Upload a CSV file with a 'content' column to classify news into categories.")
29
-
30
- uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
31
-
32
- if uploaded_file is not None:
33
- try:
34
- df = pd.read_csv(uploaded_file, encoding="utf-8") # Handle encoding issues
35
- except UnicodeDecodeError:
36
- df = pd.read_csv(uploaded_file, encoding="ISO-8859-1")
37
-
38
- if 'content' not in df.columns:
39
- st.error("Error: The uploaded CSV must contain a 'content' column.")
40
- else:
41
- st.write("Preview of uploaded data:")
42
- st.dataframe(df.head())
43
-
44
- # Preprocessing function to clean the text
45
- def preprocess_text(text):
46
- text = text.lower() # Convert to lowercase
47
- text = re.sub(r'\s+', ' ', text) # Remove extra spaces
48
- text = re.sub(r'[^a-z\s]', '', text) # Remove special characters & numbers
49
- # You don't need tokenization here, as the model tokenizer will handle it
50
- return text
51
-
52
-
53
- # Apply preprocessing and classification
54
- df['processed_content'] = df['content'].apply(preprocess_text)
55
 
56
- # Classify each record into one of the five classes
57
- df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown")
58
-
59
- # Show results
60
- st.write("Classification Results:")
61
- st.dataframe(df[['content', 'class']])
62
-
63
- # Provide CSV download
64
- output = io.BytesIO()
65
- df.to_csv(output, index=False, encoding="utf-8-sig")
66
- st.download_button(label="Download classified news", data=output.getvalue(), file_name="output.csv", mime="text/csv")
67
-
68
- ## ====================== Component 2: Q&A ====================== ##
69
- st.header("Ask a Question About the News")
70
- st.markdown("Enter a question and provide a news article to get an answer.")
71
-
72
- question = st.text_input("Ask a question:")
73
- context = st.text_area("Provide the news article or content for the Q&A:", height=150)
74
-
75
- if question and context.strip():
76
- model_name_qa = "distilbert-base-uncased-distilled-squad" # Example of a common Q&A model
77
- qa_pipeline = pipeline("question-answering", model=model_name_qa, tokenizer=model_name_qa)
78
- result = qa_pipeline(question=question, context=context)
79
-
80
- # Check if the result contains an answer
81
- if 'answer' in result and result['answer']:
82
- st.write("Answer:", result['answer'])
83
- else:
84
- st.write("No answer found in the provided content.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
6
  from transformers import AutoModelForQuestionAnswering
7
 
8
+ # Load fine-tuned models and tokenizers for both functions
 
9
  model_name_classification = "TAgroup5/news-classification-model" # Replace with the correct model name
10
  model = AutoModelForSequenceClassification.from_pretrained(model_name_classification)
11
  tokenizer = AutoTokenizer.from_pretrained(model_name_classification)
 
16
 
17
  # Initialize pipelines
18
  text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
19
+ qa_pipeline = pipeline("question-answering", model=model)
20
+
21
+ # Streamlit App
22
+ st.set_page_config(page_title="News Classification & Q&A", page_icon="πŸ“°", layout="wide")
23
+ st.markdown(
24
+ """
25
+ <style>
26
+ body {background-color: #f4f4f4;}
27
+ .title {text-align: center; font-size: 36px; font-weight: bold; color: #ff4b4b;}
28
+ .subheader {font-size: 24px; color: #333; margin-bottom: 20px; text-align: right;}
29
+ .stTextInput>div>div>input {border-radius: 10px;}
30
+ .stTextArea>div>div>textarea {border-radius: 10px;}
31
+ .stButton>button {border-radius: 10px; background-color: #ff4b4b; color: white; font-weight: bold;}
32
+ </style>
33
+ """,
34
+ unsafe_allow_html=True,
35
+ )
36
+
37
+ st.markdown('<h1 class="title">πŸ“° News Classification & Q&A App</h1>', unsafe_allow_html=True)
38
+
39
+ col1, col2 = st.columns([2, 1])
40
+ with col2:
41
+ # ====================== Component 1: News Classification ====================== #
42
+ st.markdown('<h2 class="subheader">πŸ“Œ Classify News Articles</h2>', unsafe_allow_html=True)
43
+ st.markdown("Upload a CSV file with a 'content' column to classify news into categories.")
44
+
45
+ uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
46
+
47
+ if uploaded_file is not None:
48
+ try:
49
+ df = pd.read_csv(uploaded_file, encoding="utf-8") # Handle encoding issues
50
+ except UnicodeDecodeError:
51
+ df = pd.read_csv(uploaded_file, encoding="ISO-8859-1")
 
 
52
 
53
+ if 'content' not in df.columns:
54
+ st.error("❌ Error: The uploaded CSV must contain a 'content' column.")
55
+ else:
56
+ st.success("βœ… File successfully uploaded!")
57
+ st.write("Preview of uploaded data:")
58
+ st.dataframe(df.head())
59
+
60
+ # Preprocessing function to clean the text
61
+ def preprocess_text(text):
62
+ text = text.lower() # Convert to lowercase
63
+ text = re.sub(r'\s+', ' ', text) # Remove extra spaces
64
+ text = re.sub(r'[^a-z\s]', '', text) # Remove special characters & numbers
65
+ return text
66
+
67
+ # Apply preprocessing and classification
68
+ df['processed_content'] = df['content'].apply(preprocess_text)
69
+ df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown")
70
+
71
+ # Show results
72
+ st.markdown("### πŸ”Ή Classification Results:")
73
+ st.dataframe(df[['content', 'class']])
74
+
75
+ # Provide CSV download
76
+ output = io.BytesIO()
77
+ df.to_csv(output, index=False, encoding="utf-8-sig")
78
+ st.download_button(label="⬇️ Download classified news", data=output.getvalue(), file_name="classified_news.csv", mime="text/csv")
79
+
80
+ # ====================== Component 2: Q&A ====================== #
81
+ st.markdown('<h2 class="subheader">❓ Ask a Question About the News</h2>', unsafe_allow_html=True)
82
+ st.markdown("Enter a question and provide a news article to get an answer.")
83
+
84
+ question = st.text_input("πŸ” Ask a question:")
85
+ context = st.text_area("πŸ“ Provide the news article or content:", height=150)
86
+
87
+ if question and context.strip():
88
+ model_name_qa = "distilbert-base-uncased-distilled-squad"
89
+ qa_pipeline = pipeline("question-answering", model=model_name_qa, tokenizer=model_name_qa)
90
+ result = qa_pipeline(question=question, context=context)
91
+
92
+ # Display Answer
93
+ if 'answer' in result and result['answer']:
94
+ st.markdown(f"### βœ… Answer: {result['answer']}")
95
+ else:
96
+ st.markdown("### ❌ No answer found in the provided content.")