Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,8 @@ import io
|
|
5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
6 |
from transformers import AutoModelForQuestionAnswering
|
7 |
|
8 |
-
|
|
|
9 |
model_name_classification = "TAgroup5/news-classification-model" # Replace with the correct model name
|
10 |
model = AutoModelForSequenceClassification.from_pretrained(model_name_classification)
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name_classification)
|
@@ -16,81 +17,68 @@ tokenizer_qa = AutoTokenizer.from_pretrained(model_name_qa)
|
|
16 |
|
17 |
# Initialize pipelines
|
18 |
text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
19 |
-
qa_pipeline = pipeline("question-answering", model=model)
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
st.
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
st.error("β Error: The uploaded CSV must contain a 'content' column.")
|
55 |
-
else:
|
56 |
-
st.success("β
File successfully uploaded!")
|
57 |
-
st.write("Preview of uploaded data:")
|
58 |
-
st.dataframe(df.head())
|
59 |
-
|
60 |
-
# Preprocessing function to clean the text
|
61 |
-
def preprocess_text(text):
|
62 |
-
text = text.lower() # Convert to lowercase
|
63 |
-
text = re.sub(r'\s+', ' ', text) # Remove extra spaces
|
64 |
-
text = re.sub(r'[^a-z\s]', '', text) # Remove special characters & numbers
|
65 |
-
return text
|
66 |
-
|
67 |
-
# Apply preprocessing and classification
|
68 |
-
df['processed_content'] = df['content'].apply(preprocess_text)
|
69 |
-
df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown")
|
70 |
-
|
71 |
-
# Show results
|
72 |
-
st.markdown("### πΉ Classification Results:")
|
73 |
-
st.dataframe(df[['content', 'class']])
|
74 |
-
|
75 |
-
# Provide CSV download
|
76 |
-
output = io.BytesIO()
|
77 |
-
df.to_csv(output, index=False, encoding="utf-8-sig")
|
78 |
-
st.download_button(label="β¬οΈ Download classified news", data=output.getvalue(), file_name="classified_news.csv", mime="text/csv")
|
79 |
-
|
80 |
-
# ====================== Component 2: Q&A ====================== #
|
81 |
-
st.markdown('<h2 class="subheader">β Ask a Question About the News</h2>', unsafe_allow_html=True)
|
82 |
-
st.markdown("Enter a question and provide a news article to get an answer.")
|
83 |
-
|
84 |
-
question = st.text_input("π Ask a question:")
|
85 |
-
context = st.text_area("π Provide the news article or content:", height=150)
|
86 |
-
|
87 |
-
if question and context.strip():
|
88 |
-
model_name_qa = "distilbert-base-uncased-distilled-squad"
|
89 |
-
qa_pipeline = pipeline("question-answering", model=model_name_qa, tokenizer=model_name_qa)
|
90 |
-
result = qa_pipeline(question=question, context=context)
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
6 |
from transformers import AutoModelForQuestionAnswering
|
7 |
|
8 |
+
|
9 |
+
# Load fine-tuned models and tokenizers for both functions
|
10 |
model_name_classification = "TAgroup5/news-classification-model" # Replace with the correct model name
|
11 |
model = AutoModelForSequenceClassification.from_pretrained(model_name_classification)
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name_classification)
|
|
|
17 |
|
18 |
# Initialize pipelines
|
19 |
text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
20 |
+
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
21 |
+
|
22 |
+
|
23 |
+
# Streamlit App
|
24 |
+
st.title("News Classification and Q&A")
|
25 |
+
|
26 |
+
## ====================== Component 1: News Classification ====================== ##
|
27 |
+
st.header("Classify News Articles")
|
28 |
+
st.markdown("Upload a CSV file with a 'content' column to classify news into categories.")
|
29 |
+
|
30 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
31 |
+
|
32 |
+
if uploaded_file is not None:
|
33 |
+
try:
|
34 |
+
df = pd.read_csv(uploaded_file, encoding="utf-8") # Handle encoding issues
|
35 |
+
except UnicodeDecodeError:
|
36 |
+
df = pd.read_csv(uploaded_file, encoding="ISO-8859-1")
|
37 |
+
|
38 |
+
if 'content' not in df.columns:
|
39 |
+
st.error("Error: The uploaded CSV must contain a 'content' column.")
|
40 |
+
else:
|
41 |
+
st.write("Preview of uploaded data:")
|
42 |
+
st.dataframe(df.head())
|
43 |
+
|
44 |
+
# Preprocessing function to clean the text
|
45 |
+
def preprocess_text(text):
|
46 |
+
text = text.lower() # Convert to lowercase
|
47 |
+
text = re.sub(r'\s+', ' ', text) # Remove extra spaces
|
48 |
+
text = re.sub(r'[^a-z\s]', '', text) # Remove special characters & numbers
|
49 |
+
# You don't need tokenization here, as the model tokenizer will handle it
|
50 |
+
return text
|
51 |
+
|
52 |
+
|
53 |
+
# Apply preprocessing and classification
|
54 |
+
df['processed_content'] = df['content'].apply(preprocess_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Classify each record into one of the five classes
|
57 |
+
df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown")
|
58 |
+
|
59 |
+
# Show results
|
60 |
+
st.write("Classification Results:")
|
61 |
+
st.dataframe(df[['content', 'class']])
|
62 |
+
|
63 |
+
# Provide CSV download
|
64 |
+
output = io.BytesIO()
|
65 |
+
df.to_csv(output, index=False, encoding="utf-8-sig")
|
66 |
+
st.download_button(label="Download classified news", data=output.getvalue(), file_name="output.csv", mime="text/csv")
|
67 |
+
|
68 |
+
## ====================== Component 2: Q&A ====================== ##
|
69 |
+
st.header("Ask a Question About the News")
|
70 |
+
st.markdown("Enter a question and provide a news article to get an answer.")
|
71 |
+
|
72 |
+
question = st.text_input("Ask a question:")
|
73 |
+
context = st.text_area("Provide the news article or content for the Q&A:", height=150)
|
74 |
+
|
75 |
+
if question and context.strip():
|
76 |
+
model_name_qa = "distilbert-base-uncased-distilled-squad" # Example of a common Q&A model
|
77 |
+
qa_pipeline = pipeline("question-answering", model=model_name_qa, tokenizer=model_name_qa)
|
78 |
+
result = qa_pipeline(question=question, context=context)
|
79 |
+
|
80 |
+
# Check if the result contains an answer
|
81 |
+
if 'answer' in result and result['answer']:
|
82 |
+
st.write("Answer:", result['answer'])
|
83 |
+
else:
|
84 |
+
st.write("No answer found in the provided content.")
|