TAgroup5's picture
Update app.py
72fcc70 verified
raw
history blame
3.77 kB
import streamlit as st
import pandas as pd
import re
import io
import string
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import nltk
# Download NLTK resources
nltk.download('punkt', download_dir='/root/nltk_data')
nltk.download('stopwords', download_dir='/root/nltk_data')
nltk.download('wordnet', download_dir='/root/nltk_data')
# Initialize lemmatizer and stopwords
lemmatizer = WordNetLemmatizer()
stop_words = set(stopwords.words('english'))
# Load fine-tuned model and tokenizer (adjust the model name)
model_name = "TAgroup5/news-classification-model" # Replace with the correct model name
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize pipelines
text_classification_pipeline = pipeline("text-classification", model=model, tokenizer=tokenizer)
# Streamlit App
st.title("News Classification and Q&A")
## ====================== Component 1: News Classification ====================== ##
st.header("Classify News Articles")
st.markdown("Upload a CSV file with a 'content' column to classify news into categories.")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
try:
df = pd.read_csv(uploaded_file, encoding="utf-8") # Handle encoding issues
except UnicodeDecodeError:
df = pd.read_csv(uploaded_file, encoding="ISO-8859-1")
if 'content' not in df.columns:
st.error("Error: The uploaded CSV must contain a 'content' column.")
else:
st.write("Preview of uploaded data:")
st.dataframe(df.head())
# Preprocessing function to clean the text
def preprocess_text(text):
text = text.lower() # Convert to lowercase
text = re.sub(r'[^a-z\s]', '', text) # Remove special characters & numbers
tokens = word_tokenize(text) # Tokenization
tokens = [word for word in tokens if word not in stop_words] # Remove stopwords
tokens = [lemmatizer.lemmatize(word) for word in tokens] # Lemmatization
return " ".join(tokens)
# Apply preprocessing and classification
df['processed_content'] = df['content'].apply(preprocess_text)
# Classify each record into one of the five classes
df['class'] = df['processed_content'].apply(lambda x: text_classification_pipeline(x)[0]['label'] if x.strip() else "Unknown")
# Show results
st.write("Classification Results:")
st.dataframe(df[['content', 'class']])
# Provide CSV download
output = io.BytesIO()
df.to_csv(output, index=False, encoding="utf-8-sig")
st.download_button(label="Download classified news", data=output.getvalue(), file_name="output.csv", mime="text/csv")
## ====================== Component 2: Q&A ====================== ##
st.header("Ask a Question About the News")
st.markdown("Enter a question and provide a news article to get an answer.")
question = st.text_input("Ask a question:")
context = st.text_area("Provide the news article or content for the Q&A:", height=150)
if question and context.strip():
qa_model_name = "distilbert-base-uncased-distilled-squad" # Example of a common Q&A model
qa_pipeline = pipeline("question-answering", model=qa_model_name, tokenizer=qa_model_name)
result = qa_pipeline(question=question, context=context)
# Check if the result contains an answer
if 'answer' in result and result['answer']:
st.write("Answer:", result['answer'])
else:
st.write("No answer found in the provided content.")