import argparse import pickle import warnings from pathlib import Path from neus_v.smooth_scoring import smooth_confidence_scores from neus_v.utils import clear_gpu_memory from neus_v.veval.eval import evaluate_video_with_sequence_of_images from neus_v.veval.parse import parse_proposition_set, parse_tl_specification from neus_v.vlm.internvl import InternVL # Suppress specific warnings warnings.filterwarnings( "ignore", category=DeprecationWarning, message="Conversion of an array with ndim > 0 to a scalar is deprecated" ) # Paths and parameters WEIGHT_PATH = Path("/nas/mars/model_weights/") pickle_path = WEIGHT_PATH / "distributions.pkl" num_of_frame_in_sequence = 3 model = "InternVL2-8B" device = 7 # Load the vision-language model vision_language_model = InternVL(model_name=model, device=device) # Load distributions with open(pickle_path, "rb") as f: distributions = pickle.load(f) all_dimension_data = distributions.get(model).get("all_dimension") def process_video(video_path, propositions, tl): """Process the video and compute the score_on_all.""" proposition_set = parse_proposition_set(propositions.split(",")) tl_spec = parse_tl_specification(tl) threshold = 0.349 try: result = evaluate_video_with_sequence_of_images( vision_language_model=vision_language_model, confidence_as_token_probability=True, video_path=video_path, proposition_set=proposition_set, tl_spec=tl_spec, parallel_inference=False, num_of_frame_in_sequence=num_of_frame_in_sequence, threshold=threshold, ) probability = result.get("probability") score_on_all = float( smooth_confidence_scores( target_data=[probability], prior_distribution=all_dimension_data, ) ) clear_gpu_memory() return score_on_all except Exception as e: clear_gpu_memory() return f"Error: {str(e)}" def main(): # parser = argparse.ArgumentParser(description="Process a video using temporal logic evaluation.") # parser.add_argument("video", type=str, help="Path to the video file.") # parser.add_argument("propositions", type=str, help="List of propositions (comma-separated).") # parser.add_argument("tl", type=str, help="Temporal logic specification.") # args = parser.parse_args() # score = process_video(args.video, args.propositions, args.tl) # print(f"Score on All: {score}") # Example usage example_video_path_1 = "/nas/mars/dataset/teaser/A_storm_bursts_in_with_intermittent_lightning_and_causes_flooding_and_large_waves_crash_in.mp4" example_video_path_2 = "/nas/mars/dataset/teaser/The ocean waves gently lapping at the shore, until a storm bursts in, and then lightning flashes across the sky.mp4" example_propositions = "waves lapping,ocean shore,storm bursts in,lightning on the sky" example_tl = '("waves_lapping" & "ocean_shore") U ("storm_bursts_in" U "lightning_on_the_sky")' print("Example 1:") print(f"Score: {process_video(example_video_path_1, example_propositions, example_tl)}") print("Example 2:") print(f"Score: {process_video(example_video_path_2, example_propositions, example_tl)}") if __name__ == "__main__": main()