from fastapi import FastAPI, HTTPException from pydantic import BaseModel from typing import List from transformers import pipeline import torch # Initialize the FastAPI app app = FastAPI() # Determine device (use GPU if available, otherwise CPU) device = 0 if torch.cuda.is_available() else -1 # Initialize the NER pipeline ner_pipeline = pipeline( "ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", aggregation_strategy="simple", # Updated to replace deprecated grouped_entities device=device ) # Initialize the QA pipeline qa_pipeline = pipeline( "question-answering", model="deepset/roberta-base-squad2", device=device ) # Allowed domains for filtering allowed_domains = [ "clothing", "fashion", "shopping", "accessories", "sustainability", "shoes", "hats", "shirts", "dresses", "pants", "jeans", "skirts", "jackets", "coats", "t-shirts", "sweaters", "hoodies", "activewear", "formal wear", "casual wear", "sportswear", "outerwear", "swimwear", "underwear", "lingerie", "socks", "scarves", "gloves", "belts", "ties", "caps", "beanies", "boots", "sandals", "heels", "sneakers", "materials", "cotton", "polyester", "wool", "silk", "leather", "denim", "linen", "athleisure", "ethnic wear", "fashion trends", "custom clothing", "tailoring", "sustainable materials", "recycled clothing", "fashion brands", "streetwear" ] # Pydantic models for structured response class Entity(BaseModel): word: str entity_group: str score: float class NERResponse(BaseModel): entities: List[Entity] class QAResponse(BaseModel): question: str answer: str score: float class CombinedRequest(BaseModel): text: str # The input text prompt class CombinedResponse(BaseModel): ner: NERResponse # NER output qa: QAResponse # QA output # Function to check if the input text belongs to allowed domains def is_text_in_allowed_domain(text: str, domains: List[str]) -> bool: for domain in domains: if domain in text.lower(): return True return False # Combined endpoint for NER and QA with domain filtering @app.post("/process/", response_model=CombinedResponse) async def process_request(request: CombinedRequest): """ Process the input text for both NER and QA, returning both responses, only if the text matches the allowed domains. """ input_text = request.text # Check if the input text belongs to the allowed domains if not is_text_in_allowed_domain(input_text, allowed_domains): raise HTTPException( status_code=400, detail=( "The input text does not match the allowed domains. " "Please provide a query related to clothing, fashion, or accessories." ) ) # Perform Named Entity Recognition (NER) ner_entities = ner_pipeline(input_text) # Process the NER entities into the required format formatted_entities = [ { "word": entity["word"], "entity_group": entity["entity_group"], "score": float(entity["score"]), # Convert numpy.float32 to Python float } for entity in ner_entities ] ner_response = {"entities": formatted_entities} # Perform Question Answering (QA) qa_result = qa_pipeline(question=input_text, context=input_text) qa_result["score"] = float(qa_result["score"]) # Convert numpy.float32 to Python float qa_response = { "question": input_text, "answer": qa_result["answer"], "score": qa_result["score"] } # Return both NER and QA responses return {"ner": ner_response, "qa": qa_response} # Root endpoint @app.get("/") async def root(): """ Root endpoint to confirm the server is running. """ return {"message": "Welcome to the filtered NER and QA API!"}