from fastapi import FastAPI, HTTPException from pydantic import BaseModel from typing import List, Dict, Any from pymongo import MongoClient from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration import spacy import os import logging import re # Set up logging with detailed output logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) app = FastAPI() # MongoDB Setup connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:7iA2Qd6Uc89a52fd@hutterdev.h88gv.mongodb.net/?retryWrites=true&w=majority&appName=Hutterdev") client = MongoClient(connection_string) db = client["test"] products_collection = db["products"] # BlenderBot Setup model_repo = "SyedHutter/blenderbot_model" model_subfolder = "blenderbot_model" model_dir = "/home/user/app/blenderbot_model" if not os.path.exists(model_dir): logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...") tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder) model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder) os.makedirs(model_dir, exist_ok=True) tokenizer.save_pretrained(model_dir) model.save_pretrained(model_dir) logger.info("Model download complete.") else: logger.info(f"Loading pre-existing model from {model_dir}.") tokenizer = BlenderbotTokenizer.from_pretrained(model_dir) model = BlenderbotForConditionalGeneration.from_pretrained(model_dir) # Static Context context_msg = "I am Hutter, your shopping guide for Hutter Products GmbH. I’m here to help you explore our innovative and sustainable product catalog, featuring eco-friendly items like recycled textiles and ocean plastic goods. Let me assist you in finding the perfect sustainable solution!" # spaCy Setup spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0" nlp = spacy.load(spacy_model_path) # Pydantic Models class PromptRequest(BaseModel): input_text: str conversation_history: List[str] = [] class CombinedResponse(BaseModel): ner: Dict[str, Any] qa: Dict[str, Any] products_matched: List[Dict[str, Any]] # Helper Functions def extract_keywords(text: str) -> List[str]: doc = nlp(text) keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]] return list(set(keywords)) def detect_intent(text: str) -> str: doc = nlp(text.lower()) text_lower = text.lower() # General product-related intent based on shopping context if any(token.text in ["buy", "shop", "find", "recommend", "product", "products", "item", "store", "catalog"] for token in doc) or "what" in text_lower.split()[:2]: return "recommend_product" elif any(token.text in ["company", "who", "do"] for token in doc): return "company_info" elif "name" in text_lower: return "ask_name" elif re.search(r"\d+\s*[\+\-\*/]\s*\d+", text_lower): return "math_query" return "recommend_product" # Default to product focus for scalability def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]: if not keywords: logger.info("No keywords provided, returning empty product list.") return [] query = {"$or": [{"name": {"$regex": f"\\b{keyword}\\b", "$options": "i"}} for keyword in keywords]} matched_products = [ { "id": str(p["_id"]), "name": p.get("name", "Unknown"), "skuNumber": p.get("skuNumber", "N/A"), "description": p.get("description", "No description available") } for p in products_collection.find(query) ] return matched_products def get_product_context(products: List[Dict]) -> str: if not products: return "" product_str = "Available products: " product_str += ", ".join([f"'{p['name']}' - {p['description']}" for p in products[:2]]) return product_str def format_response(response: str, products: List[Dict], intent: str, input_text: str) -> str: # Handle product recommendation intent if intent == "recommend_product": if not products: return "I’d love to recommend something from our sustainable catalog! Could you tell me more about what you’re looking for?" product = products[0] return f"Check out our '{product['name']}'—it’s {product['description'].lower()}. Want to explore more options?" elif intent == "company_info": return "Hutter Products GmbH specializes in sustainable product design and production, offering eco-friendly items like recycled textiles and ocean plastic goods." elif intent == "ask_name": return "I’m Hutter, your shopping guide for Hutter Products GmbH. How can I assist you today?" elif intent == "math_query": match = re.search(r"(\d+)\s*([\+\-\*/])\s*(\d+)", input_text.lower()) if match: num1, op, num2 = int(match.group(1)), match.group(2), int(match.group(3)) if op == "+": return f"{num1} plus {num2} is {num1 + num2}. Need help with shopping too?" elif op == "-": return f"{num1} minus {num2} is {num1 - num2}. Anything else I can assist with?" elif op == "*": return f"{num1} times {num2} is {num1 * num2}. Want to explore our products?" elif op == "/": return f"{num1} divided by {num2} is {num1 / num2}." if num2 != 0 else "Can’t divide by zero! How about some sustainable products instead?" return "I can do simple math—try '2 + 2'. What else can I help you with?" # Fallback with product nudge if available if products: product = products[0] return f"{response} By the way, how about our '{product['name']}'? It’s {product['description'].lower()}." return response if response else "How can I assist you with our sustainable products today?" # Endpoints @app.get("/") async def root(): return {"message": "Welcome to the NER and Chat API!"} @app.post("/process/", response_model=CombinedResponse) async def process_prompt(request: PromptRequest): try: logger.info(f"Processing request: {request.input_text}") input_text = request.input_text history = request.conversation_history[-3:] if request.conversation_history else [] intent = detect_intent(input_text) keywords = extract_keywords(input_text) logger.info(f"Intent: {intent}, Keywords: {keywords}") products = search_products_by_keywords(keywords) product_context = get_product_context(products) logger.info(f"Products matched: {len(products)}") history_str = " || ".join(history) full_input = f"{context_msg} || {history_str} || {product_context} || {input_text}" if (history or product_context) else f"{context_msg} || {input_text}" logger.info(f"Full input to model: {full_input}") logger.info("Tokenizing input...") inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=512) logger.info("Input tokenized successfully.") logger.info("Generating model response...") outputs = model.generate(**inputs, max_length=50, num_beams=4, length_penalty=1.0, no_repeat_ngram_size=2) logger.info("Model generation complete.") logger.info("Decoding model output...") response = tokenizer.decode(outputs[0], skip_special_tokens=True) logger.info(f"Model response: {response}") enhanced_response = format_response(response, products, intent, input_text) qa_response = { "question": input_text, "answer": enhanced_response, "score": 1.0 } logger.info("Returning response...") return { "ner": {"extracted_keywords": keywords}, "qa": qa_response, "products_matched": products } except Exception as e: logger.error(f"Error processing request: {str(e)}", exc_info=True) raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}. Try again!") @app.on_event("startup") async def startup_event(): logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.") @app.on_event("shutdown") def shutdown_event(): client.close()