Spaces:
Sleeping
Sleeping
Delete app.py
Browse filesDelete Old app.py
app.py
DELETED
@@ -1,129 +0,0 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from typing import List
|
4 |
-
from transformers import pipeline
|
5 |
-
import torch
|
6 |
-
|
7 |
-
# Initialize the FastAPI app
|
8 |
-
app = FastAPI()
|
9 |
-
|
10 |
-
# Determine device (use GPU if available, otherwise CPU)
|
11 |
-
device = 0 if torch.cuda.is_available() else -1
|
12 |
-
|
13 |
-
# Initialize the NER pipeline
|
14 |
-
ner_pipeline = pipeline(
|
15 |
-
"ner",
|
16 |
-
model="dbmdz/bert-large-cased-finetuned-conll03-english",
|
17 |
-
aggregation_strategy="simple",
|
18 |
-
device=device
|
19 |
-
)
|
20 |
-
|
21 |
-
# Initialize the QA pipeline
|
22 |
-
qa_pipeline = pipeline(
|
23 |
-
"question-answering",
|
24 |
-
model="deepset/roberta-base-squad2",
|
25 |
-
device=device
|
26 |
-
)
|
27 |
-
|
28 |
-
# Allowed domains for filtering
|
29 |
-
allowed_domains = [
|
30 |
-
"clothing", "fashion", "shopping", "accessories", "sustainability", "shoes", "hats", "shirts",
|
31 |
-
"dresses", "pants", "jeans", "skirts", "jackets", "coats", "t-shirts", "sweaters", "hoodies",
|
32 |
-
"activewear", "formal wear", "casual wear", "sportswear", "outerwear", "swimwear", "underwear",
|
33 |
-
"lingerie", "socks", "scarves", "gloves", "belts", "ties", "caps", "beanies", "boots", "sandals",
|
34 |
-
"heels", "sneakers", "materials", "cotton", "polyester", "wool", "silk", "leather", "denim",
|
35 |
-
"linen", "athleisure", "ethnic wear", "fashion trends", "custom clothing", "tailoring",
|
36 |
-
"sustainable materials", "recycled clothing", "fashion brands", "streetwear",
|
37 |
-
"footwear", "handbags", "jewelry", "watches", "eyewear", "cosmetics", "beauty products",
|
38 |
-
"personal care", "fragrances", "home decor", "lifestyle", "luxury goods", "vintage clothing",
|
39 |
-
"second-hand clothing", "upcycled fashion", "ethical fashion", "eco-friendly products",
|
40 |
-
"fashion technology", "textile innovation", "fashion marketing", "fashion retail"
|
41 |
-
]
|
42 |
-
|
43 |
-
# Context for the QA pipeline
|
44 |
-
context_msg = (
|
45 |
-
"Hutter Products GmbH provides a wide array of services to help businesses create high-quality, sustainable products. "
|
46 |
-
"Their offerings include comprehensive product design, ensuring items are both visually appealing and functional, and product consulting, "
|
47 |
-
"which provides expert advice on features, materials, and design elements. They also offer sustainability consulting to integrate eco-friendly practices, "
|
48 |
-
"such as using recycled materials and Ocean Bound Plastic. Additionally, they manage customized production to ensure products meet the highest standards "
|
49 |
-
"and offer product animation services, creating realistic rendered images and animations to enhance online engagement. These services collectively enable "
|
50 |
-
"businesses to develop products that are sustainable, market-responsive, and aligned with their brand identity."
|
51 |
-
)
|
52 |
-
|
53 |
-
# Pydantic models for structured responses
|
54 |
-
class Entity(BaseModel):
|
55 |
-
word: str
|
56 |
-
entity_group: str
|
57 |
-
score: float
|
58 |
-
|
59 |
-
class NERResponse(BaseModel):
|
60 |
-
entities: List[Entity]
|
61 |
-
words: List[str] # List of extracted words (added)
|
62 |
-
|
63 |
-
class QAResponse(BaseModel):
|
64 |
-
question: str
|
65 |
-
answer: str
|
66 |
-
score: float
|
67 |
-
|
68 |
-
class CombinedRequest(BaseModel):
|
69 |
-
text: str # The input text prompt
|
70 |
-
|
71 |
-
class CombinedResponse(BaseModel):
|
72 |
-
ner: NERResponse # NER output
|
73 |
-
qa: QAResponse # QA output
|
74 |
-
|
75 |
-
# Function to check if the input text belongs to allowed domains
|
76 |
-
def is_text_in_allowed_domain(text: str, domains: List[str]) -> bool:
|
77 |
-
for domain in domains:
|
78 |
-
if domain in text.lower():
|
79 |
-
return True
|
80 |
-
return False
|
81 |
-
|
82 |
-
# Combined endpoint for NER and QA with domain filtering
|
83 |
-
@app.post("/process/", response_model=CombinedResponse)
|
84 |
-
async def process_request(request: CombinedRequest):
|
85 |
-
input_text = request.text
|
86 |
-
|
87 |
-
# Check if the input text belongs to the allowed domains
|
88 |
-
if not is_text_in_allowed_domain(input_text, allowed_domains):
|
89 |
-
raise HTTPException(
|
90 |
-
status_code=400,
|
91 |
-
detail="The input text does not match the allowed domains. Please provide a query related to clothing, fashion, or accessories."
|
92 |
-
)
|
93 |
-
|
94 |
-
# Perform Named Entity Recognition (NER)
|
95 |
-
ner_entities = ner_pipeline(input_text)
|
96 |
-
|
97 |
-
# Process NER results into a structured response
|
98 |
-
formatted_entities = [
|
99 |
-
{
|
100 |
-
"word": entity["word"],
|
101 |
-
"entity_group": entity["entity_group"],
|
102 |
-
"score": float(entity["score"]),
|
103 |
-
}
|
104 |
-
for entity in ner_entities
|
105 |
-
]
|
106 |
-
ner_words = [entity["word"] for entity in ner_entities] # Collect only the words
|
107 |
-
|
108 |
-
ner_response = {
|
109 |
-
"entities": formatted_entities,
|
110 |
-
"words": ner_words # Include the list of words
|
111 |
-
}
|
112 |
-
|
113 |
-
# Perform Question Answering (QA)
|
114 |
-
qa_result = qa_pipeline(question=input_text, context=context_msg)
|
115 |
-
qa_result["score"] = float(qa_result["score"]) # Convert numpy.float32 to Python float
|
116 |
-
|
117 |
-
qa_response = {
|
118 |
-
"question": input_text,
|
119 |
-
"answer": qa_result["answer"],
|
120 |
-
"score": qa_result["score"]
|
121 |
-
}
|
122 |
-
|
123 |
-
# Return both NER and QA responses
|
124 |
-
return {"ner": ner_response, "qa": qa_response}
|
125 |
-
|
126 |
-
# Root endpoint
|
127 |
-
@app.get("/")
|
128 |
-
async def root():
|
129 |
-
return {"message": "Welcome to the NER and QA API!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|