Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import List
|
4 |
+
from transformers import pipeline
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Initialize the FastAPI app
|
8 |
+
app = FastAPI()
|
9 |
+
|
10 |
+
# Determine device (use GPU if available, otherwise CPU)
|
11 |
+
device = 0 if torch.cuda.is_available() else -1
|
12 |
+
|
13 |
+
# Initialize the NER pipeline
|
14 |
+
ner_pipeline = pipeline(
|
15 |
+
"ner",
|
16 |
+
model="dbmdz/bert-large-cased-finetuned-conll03-english",
|
17 |
+
aggregation_strategy="simple",
|
18 |
+
device=device
|
19 |
+
)
|
20 |
+
|
21 |
+
# Initialize the QA pipeline
|
22 |
+
qa_pipeline = pipeline(
|
23 |
+
"question-answering",
|
24 |
+
model="deepset/roberta-base-squad2",
|
25 |
+
device=device
|
26 |
+
)
|
27 |
+
|
28 |
+
# Allowed domains for filtering
|
29 |
+
allowed_domains = [
|
30 |
+
"clothing", "fashion", "shopping", "accessories", "pants", "jeans", "shirts", "sustainable materials"
|
31 |
+
]
|
32 |
+
|
33 |
+
# Context for the QA pipeline
|
34 |
+
context_msg = """
|
35 |
+
We offer a wide variety of clothing options, including sustainable pants, jeans, chinos, and trousers.
|
36 |
+
Our products are made with eco-friendly materials and are available in styles such as casual wear, formal wear, and activewear.
|
37 |
+
"""
|
38 |
+
|
39 |
+
# Pydantic models for structured responses
|
40 |
+
class Entity(BaseModel):
|
41 |
+
word: str
|
42 |
+
entity_group: str
|
43 |
+
score: float
|
44 |
+
|
45 |
+
class NERResponse(BaseModel):
|
46 |
+
entities: List[Entity]
|
47 |
+
words: List[str] # List of extracted words (added)
|
48 |
+
|
49 |
+
class QAResponse(BaseModel):
|
50 |
+
question: str
|
51 |
+
answer: str
|
52 |
+
score: float
|
53 |
+
|
54 |
+
class CombinedRequest(BaseModel):
|
55 |
+
text: str # The input text prompt
|
56 |
+
|
57 |
+
class CombinedResponse(BaseModel):
|
58 |
+
ner: NERResponse # NER output
|
59 |
+
qa: QAResponse # QA output
|
60 |
+
|
61 |
+
# Function to check if the input text belongs to allowed domains
|
62 |
+
def is_text_in_allowed_domain(text: str, domains: List[str]) -> bool:
|
63 |
+
for domain in domains:
|
64 |
+
if domain in text.lower():
|
65 |
+
return True
|
66 |
+
return False
|
67 |
+
|
68 |
+
# Combined endpoint for NER and QA with domain filtering
|
69 |
+
@app.post("/process/", response_model=CombinedResponse)
|
70 |
+
async def process_request(request: CombinedRequest):
|
71 |
+
input_text = request.text
|
72 |
+
|
73 |
+
# Check if the input text belongs to the allowed domains
|
74 |
+
if not is_text_in_allowed_domain(input_text, allowed_domains):
|
75 |
+
raise HTTPException(
|
76 |
+
status_code=400,
|
77 |
+
detail="The input text does not match the allowed domains. Please provide a query related to clothing, fashion, or accessories."
|
78 |
+
)
|
79 |
+
|
80 |
+
# Perform Named Entity Recognition (NER)
|
81 |
+
ner_entities = ner_pipeline(input_text)
|
82 |
+
|
83 |
+
# Process NER results into a structured response
|
84 |
+
formatted_entities = [
|
85 |
+
{
|
86 |
+
"word": entity["word"],
|
87 |
+
"entity_group": entity["entity_group"],
|
88 |
+
"score": float(entity["score"]),
|
89 |
+
}
|
90 |
+
for entity in ner_entities
|
91 |
+
]
|
92 |
+
ner_words = [entity["word"] for entity in ner_entities] # Collect only the words
|
93 |
+
|
94 |
+
ner_response = {
|
95 |
+
"entities": formatted_entities,
|
96 |
+
"words": ner_words # Include the list of words
|
97 |
+
}
|
98 |
+
|
99 |
+
# Perform Question Answering (QA)
|
100 |
+
qa_result = qa_pipeline(question=input_text, context=context_msg)
|
101 |
+
qa_result["score"] = float(qa_result["score"]) # Convert numpy.float32 to Python float
|
102 |
+
|
103 |
+
qa_response = {
|
104 |
+
"question": input_text,
|
105 |
+
"answer": qa_result["answer"],
|
106 |
+
"score": qa_result["score"]
|
107 |
+
}
|
108 |
+
|
109 |
+
# Return both NER and QA responses
|
110 |
+
return {"ner": ner_response, "qa": qa_response}
|
111 |
+
|
112 |
+
# Root endpoint
|
113 |
+
@app.get("/")
|
114 |
+
async def root():
|
115 |
+
return {"message": "Welcome to the NER and QA API!"}
|