File size: 5,395 Bytes
32d7156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9246354
 
32d7156
 
 
9246354
 
 
32d7156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]

# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model"  # Repo ID
model_subfolder = "blenderbot_model"        # Subdirectory within repo
model_dir = "/home/user/app/blenderbot_model"

if not os.path.exists(model_dir):
    logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
    tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
    model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
    os.makedirs(model_dir, exist_ok=True)
    tokenizer.save_pretrained(model_dir)
    model.save_pretrained(model_dir)
    logger.info("Model download complete.")
else:
    logger.info(f"Loading pre-existing model from {model_dir}.")

tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir)

# Static Context
context_msg = "Hutter Products GmbH provides sustainable products like shirts and shorts..."

# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)

# Pydantic Models
class PromptRequest(BaseModel):
    input_text: str
    conversation_history: List[str] = []

class CombinedResponse(BaseModel):
    ner: Dict[str, Any]
    qa: Dict[str, Any]
    products_matched: List[Dict[str, Any]]

# Helper Functions
def extract_keywords(text: str) -> List[str]:
    doc = nlp(text)
    keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
    return list(set(keywords))

def detect_intent(text: str) -> str:
    doc = nlp(text.lower())
    if any(token.text in ["shirt", "shirts"] for token in doc):
        return "recommend_shirt"
    elif any(token.text in ["short", "shorts"] for token in doc):
        return "recommend_shorts"
    elif any(token.text in ["what", "who", "company", "do", "products"] for token in doc):
        return "company_info"
    return "unknown"

def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
    query = {"$or": [{"name": {"$regex": keyword, "$options": "i"}} for keyword in keywords]}
    matched_products = [dict(p, id=str(p["_id"])) for p in products_collection.find(query)]
    return matched_products

def get_product_context(products: List[Dict]) -> str:
    if not products:
        return ""
    product_str = "Here are some products: "
    product_str += ", ".join([f"'{p['name']}' (SKU: {p['skuNumber']}) - {p['description']}" for p in products[:2]])
    return product_str

def format_response(response: str, products: List[Dict], intent: str) -> str:
    if intent in ["recommend_shirt", "recommend_shorts"] and products:
        product = products[0]
        return f"{response} For example, check out our '{product['name']}' (SKU: {product['skuNumber']})—it’s {product['description'].lower()}!"
    elif intent == "company_info":
        return f"{response} At Hutter Products GmbH, we specialize in sustainable product design and production!"
    return response

# Endpoints
@app.get("/")
async def root():
    return {"message": "Welcome to the NER and Chat API!"}

@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
    try:
        input_text = request.input_text
        history = request.conversation_history[-3:] if request.conversation_history else []

        intent = detect_intent(input_text)
        keywords = extract_keywords(input_text)
        ner_response = {"extracted_keywords": keywords}

        products = search_products_by_keywords(keywords)
        product_context = get_product_context(products)

        history_str = " || ".join(history)
        full_input = f"{history_str} || {product_context} {context_msg} || {input_text}" if history else f"{product_context} {context_msg} || {input_text}"
        inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=512)
        outputs = model.generate(**inputs, max_length=150, num_beams=5, no_repeat_ngram_size=2)
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)

        enhanced_response = format_response(response, products, intent)
        qa_response = {
            "question": input_text,
            "answer": enhanced_response,
            "score": 1.0
        }

        return {
            "ner": ner_response,
            "qa": qa_response,
            "products_matched": products
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}. Try again!")

@app.on_event("startup")
async def startup_event():
    logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")

@app.on_event("shutdown")
def shutdown_event():
    client.close()