Spaces:
Sleeping
Sleeping
File size: 5,395 Bytes
32d7156 9246354 32d7156 9246354 32d7156 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]
# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model" # Repo ID
model_subfolder = "blenderbot_model" # Subdirectory within repo
model_dir = "/home/user/app/blenderbot_model"
if not os.path.exists(model_dir):
logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
os.makedirs(model_dir, exist_ok=True)
tokenizer.save_pretrained(model_dir)
model.save_pretrained(model_dir)
logger.info("Model download complete.")
else:
logger.info(f"Loading pre-existing model from {model_dir}.")
tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir)
# Static Context
context_msg = "Hutter Products GmbH provides sustainable products like shirts and shorts..."
# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)
# Pydantic Models
class PromptRequest(BaseModel):
input_text: str
conversation_history: List[str] = []
class CombinedResponse(BaseModel):
ner: Dict[str, Any]
qa: Dict[str, Any]
products_matched: List[Dict[str, Any]]
# Helper Functions
def extract_keywords(text: str) -> List[str]:
doc = nlp(text)
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
return list(set(keywords))
def detect_intent(text: str) -> str:
doc = nlp(text.lower())
if any(token.text in ["shirt", "shirts"] for token in doc):
return "recommend_shirt"
elif any(token.text in ["short", "shorts"] for token in doc):
return "recommend_shorts"
elif any(token.text in ["what", "who", "company", "do", "products"] for token in doc):
return "company_info"
return "unknown"
def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
query = {"$or": [{"name": {"$regex": keyword, "$options": "i"}} for keyword in keywords]}
matched_products = [dict(p, id=str(p["_id"])) for p in products_collection.find(query)]
return matched_products
def get_product_context(products: List[Dict]) -> str:
if not products:
return ""
product_str = "Here are some products: "
product_str += ", ".join([f"'{p['name']}' (SKU: {p['skuNumber']}) - {p['description']}" for p in products[:2]])
return product_str
def format_response(response: str, products: List[Dict], intent: str) -> str:
if intent in ["recommend_shirt", "recommend_shorts"] and products:
product = products[0]
return f"{response} For example, check out our '{product['name']}' (SKU: {product['skuNumber']})—it’s {product['description'].lower()}!"
elif intent == "company_info":
return f"{response} At Hutter Products GmbH, we specialize in sustainable product design and production!"
return response
# Endpoints
@app.get("/")
async def root():
return {"message": "Welcome to the NER and Chat API!"}
@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
try:
input_text = request.input_text
history = request.conversation_history[-3:] if request.conversation_history else []
intent = detect_intent(input_text)
keywords = extract_keywords(input_text)
ner_response = {"extracted_keywords": keywords}
products = search_products_by_keywords(keywords)
product_context = get_product_context(products)
history_str = " || ".join(history)
full_input = f"{history_str} || {product_context} {context_msg} || {input_text}" if history else f"{product_context} {context_msg} || {input_text}"
inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=512)
outputs = model.generate(**inputs, max_length=150, num_beams=5, no_repeat_ngram_size=2)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
enhanced_response = format_response(response, products, intent)
qa_response = {
"question": input_text,
"answer": enhanced_response,
"score": 1.0
}
return {
"ner": ner_response,
"qa": qa_response,
"products_matched": products
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}. Try again!")
@app.on_event("startup")
async def startup_event():
logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")
@app.on_event("shutdown")
def shutdown_event():
client.close() |