Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,86 @@
|
|
1 |
-
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import math
|
3 |
|
4 |
st.title("Scientific Calculator")
|
|
|
1 |
+
import streamlit as stimport streamlit as st
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
|
5 |
+
# ------------------- CONFIGURATION ------------------- #
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/HuggingFaceTB/SmolVLM-256M-Instruct"
|
7 |
+
API_TOKEN = "YOUR_HUGGINGFACE_API_TOKEN" # Replace with your actual Hugging Face API token
|
8 |
+
|
9 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
10 |
+
|
11 |
+
# ------------------- FUNCTION TO QUERY MODEL ------------------- #
|
12 |
+
def query_huggingface_api(prompt):
|
13 |
+
payload = {
|
14 |
+
"inputs": prompt,
|
15 |
+
"parameters": {
|
16 |
+
"max_new_tokens": 200,
|
17 |
+
"temperature": 0.7
|
18 |
+
}
|
19 |
+
}
|
20 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
21 |
+
if response.status_code != 200:
|
22 |
+
st.error(f"API Error {response.status_code}: {response.text}")
|
23 |
+
return None
|
24 |
+
return response.json()
|
25 |
+
|
26 |
+
# ------------------- STREAMLIT APP ------------------- #
|
27 |
+
st.set_page_config(page_title="Build Smart Estimator", page_icon="ποΈ")
|
28 |
+
|
29 |
+
# App title
|
30 |
+
st.title("ποΈ Build Smart Estimator")
|
31 |
+
st.markdown("""
|
32 |
+
Welcome to **Build Smart Estimator** β an intelligent tool to help you estimate construction materials based on your project details!
|
33 |
+
""")
|
34 |
+
|
35 |
+
# Input Fields
|
36 |
+
st.header("Enter Your Project Details")
|
37 |
+
|
38 |
+
col1, col2 = st.columns(2)
|
39 |
+
|
40 |
+
with col1:
|
41 |
+
total_area = st.number_input("π Total Area (in square meters)", min_value=10.0, step=10.0)
|
42 |
+
num_floors = st.number_input("π’ Number of Floors", min_value=1, step=1)
|
43 |
+
|
44 |
+
with col2:
|
45 |
+
structure_type = st.selectbox("ποΈ Structure Type", options=[
|
46 |
+
"Residential", "Commercial", "Industrial", "Warehouse"
|
47 |
+
])
|
48 |
+
material_pref = st.multiselect(
|
49 |
+
"π§± Material Preference (Select one or more)",
|
50 |
+
options=["Cement", "Bricks", "Steel", "Concrete"]
|
51 |
+
)
|
52 |
+
|
53 |
+
# Submit button
|
54 |
+
if st.button("Estimate Materials π"):
|
55 |
+
if total_area <= 0 or num_floors <= 0:
|
56 |
+
st.warning("Please enter valid Total Area and Number of Floors.")
|
57 |
+
elif not material_pref:
|
58 |
+
st.warning("Please select at least one Material Preference.")
|
59 |
+
else:
|
60 |
+
# Prepare input prompt for the model
|
61 |
+
prompt = (
|
62 |
+
f"Estimate the required quantities of {', '.join(material_pref)} "
|
63 |
+
f"for a {structure_type.lower()} building with a total area of {total_area} square meters "
|
64 |
+
f"and {num_floors} floors. Provide the estimates in a clear and concise manner."
|
65 |
+
)
|
66 |
+
|
67 |
+
st.info("Sending your inputs to the smart estimator...")
|
68 |
+
|
69 |
+
# Call Hugging Face model
|
70 |
+
response = query_huggingface_api(prompt)
|
71 |
+
|
72 |
+
if response:
|
73 |
+
st.subheader("π Estimated Material Requirements")
|
74 |
+
# Assuming the model returns a list with a 'generated_text' field
|
75 |
+
if isinstance(response, list) and 'generated_text' in response[0]:
|
76 |
+
st.write(response[0]['generated_text'])
|
77 |
+
else:
|
78 |
+
st.write(response)
|
79 |
+
|
80 |
+
# Footer
|
81 |
+
st.markdown("---")
|
82 |
+
st.caption("Β© 2025 Build Smart Estimator | Powered by Streamlit & Hugging Face")
|
83 |
+
|
84 |
import math
|
85 |
|
86 |
st.title("Scientific Calculator")
|