Swekerr commited on
Commit
7b34bdd
·
verified ·
1 Parent(s): 98c0df1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torchvision import transforms
4
+ from PIL import Image
5
+ import gradio as gr
6
+
7
+ model.load_state_dict(torch.load("squeezenet.pth"))
8
+ model.eval()
9
+
10
+ transform = transforms.Compose([
11
+ transforms.Resize((128, 128)),
12
+ transforms.ToTensor(),
13
+ transforms.Normalize([0.5], [0.5])
14
+ ])
15
+
16
+ def classify_brain_tumor(image):
17
+ image = transform(image).unsqueeze(0)
18
+ with torch.no_grad():
19
+ output = model(image)
20
+ _, predicted = torch.max(output, 1)
21
+ return "Tumor" if predicted.item() == 1 else "No Tumor"
22
+
23
+ interface = gr.Interface(
24
+ fn=classify_brain_tumor,
25
+ inputs=gr.inputs.Image(type="pil"),
26
+ outputs="text",
27
+ title="Brain Tumor Classification",
28
+ description="Upload an MRI image to classify if it has a tumor or not. The Model is SqueezeNet."
29
+ )
30
+
31
+ interface.launch()