Spaces:
Runtime error
Runtime error
import json | |
import os | |
import pathlib | |
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
from pytorch_fid.inception import InceptionV3 | |
from scipy import linalg | |
from torch.nn.functional import adaptive_avg_pool2d | |
from tools.metrics.utils import tracker | |
try: | |
from tqdm import tqdm | |
except ImportError: | |
# If tqdm is not available, provide a mock version of it | |
def tqdm(x): | |
return x | |
IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"} | |
class ImagePathDataset(torch.utils.data.Dataset): | |
def __init__(self, files, transforms=None): | |
self.files = files | |
self.transforms = transforms | |
def __len__(self): | |
return len(self.files) | |
def __getitem__(self, i): | |
path = self.files[i] | |
try: | |
img = Image.open(path) | |
assert img.mode == "RGB" | |
if self.transforms is not None: | |
img = self.transforms(img) | |
except Exception as e: | |
raise FileNotFoundError(path, "\n", e) | |
return img | |
def get_activations(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1): | |
model.eval() | |
if batch_size > len(files): | |
print("Warning: batch size is bigger than the data size. " "Setting batch size to data size") | |
batch_size = len(files) | |
transform = T.Compose( | |
[ | |
T.Resize(args.img_size), # Image.BICUBIC | |
T.CenterCrop(args.img_size), | |
T.ToTensor(), | |
] | |
) | |
dataset = ImagePathDataset(files, transforms=transform) | |
dataloader = torch.utils.data.DataLoader( | |
dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers | |
) | |
pred_arr = np.empty((len(files), dims)) | |
start_idx = 0 | |
for batch in tqdm(dataloader, desc=f"FID: {args.exp_name}", position=args.gpu_id, leave=True): | |
batch = batch.to(device) | |
with torch.no_grad(): | |
pred = model(batch)[0] | |
# If model output is not scalar, apply global spatial average pooling. | |
# This happens if you choose a dimensionality not equal 2048. | |
if pred.size(2) != 1 or pred.size(3) != 1: | |
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
pred = pred.squeeze(3).squeeze(2).cpu().numpy() | |
pred_arr[start_idx : start_idx + pred.shape[0]] = pred | |
start_idx = start_idx + pred.shape[0] | |
return pred_arr | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths" | |
assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions" | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ("fid calculation produces singular product; " "adding %s to diagonal of cov estimates") % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError(f"Imaginary component {m}") | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean | |
def calculate_activation_statistics(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1): | |
act = get_activations(files, model, batch_size, dims, device, num_workers) | |
mu = np.mean(act, axis=0) | |
sigma = np.cov(act, rowvar=False) | |
return mu, sigma | |
def compute_statistics_of_path(path, model, batch_size, dims, device, num_workers=1, flag="ref"): | |
if path.endswith(".npz"): | |
print("loaded from npz files") | |
with np.load(path) as f: | |
m, s = f["mu"][:], f["sigma"][:] | |
elif path.endswith(".json"): | |
with open(path) as file: | |
data_dict = json.load(file) | |
all_lines = list(data_dict.keys())[:sample_nums] | |
files = [] | |
if isinstance(all_lines, list): | |
for k in all_lines: | |
v = data_dict[k] | |
if "PG-eval-data" in args.img_path: | |
img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg") | |
else: | |
img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg") | |
files.append(img_path) | |
elif isinstance(all_lines, dict): | |
assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files") | |
for k, v in all_lines.items(): | |
if "PG-eval-data" in args.img_path: | |
img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg") | |
else: | |
img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg") | |
files.append(img_path) | |
files = sorted(files) | |
m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers) | |
else: | |
path = pathlib.Path(path) | |
files = sorted([file for ext in IMAGE_EXTENSIONS for file in path.glob(f"*.{ext}")]) | |
m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers) | |
return m, s | |
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1): | |
"""Calculates the FID of two paths""" | |
for p in paths: | |
if not os.path.exists(p): | |
raise RuntimeError("Invalid path: %s" % p) | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
model = InceptionV3([block_idx]).to(device) | |
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref") | |
m2, s2 = compute_statistics_of_path(paths[1], model, batch_size, dims, device, num_workers, flag="gen") | |
fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
return fid_value | |
def save_fid_stats(paths, batch_size, device, dims, num_workers=1): | |
"""Calculates the FID of two paths""" | |
if not os.path.exists(paths[0]): | |
raise RuntimeError("Invalid path: %s" % paths[0]) | |
if os.path.exists(paths[1]): | |
raise RuntimeError("Existing output file: %s" % paths[1]) | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
model = InceptionV3([block_idx]).to(device) | |
print(f"Saving statistics for {paths[0]}") | |
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref") | |
np.savez_compressed(paths[1], mu=m1, sigma=s1) | |
def main(): | |
txt_path = args.txt_path if args.txt_path is not None else args.img_path | |
save_txt_path = os.path.join(txt_path, f"{args.exp_name}_sample{sample_nums}.txt") | |
if os.path.exists(save_txt_path): | |
with open(save_txt_path) as f: | |
fid_value = f.readlines()[0].strip() | |
print(f"FID {fid_value}: {args.exp_name}") | |
return {args.exp_name: float(fid_value)} | |
if args.device is None: | |
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") | |
else: | |
device = torch.device(args.device) | |
if args.num_workers is None: | |
try: | |
num_cpus = len(os.sched_getaffinity(0)) | |
except AttributeError: | |
num_cpus = os.cpu_count() | |
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 | |
else: | |
num_workers = args.num_workers | |
if args.save_stats: | |
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers) | |
return | |
fid_value = calculate_fid_given_paths(args.path, args.batch_size, device, args.dims, num_workers) | |
print(f"FID {fid_value}: {args.exp_name}") | |
with open(save_txt_path, "w") as file: | |
file.write(str(fid_value)) | |
return {args.exp_name: fid_value} | |
def parse_args(): | |
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--batch-size", type=int, default=50, help="Batch size to use") | |
parser.add_argument( | |
"--num-workers", type=int, help="Number of processes to use for data loading. Defaults to `min(8, num_cpus)`" | |
) | |
parser.add_argument("--img_size", type=int, default=512) | |
parser.add_argument("--device", type=str, default="cuda", help="Device to use. Like cuda, cuda:0 or cpu") | |
parser.add_argument("--img_path", type=str, default=None) | |
parser.add_argument("--exp_name", type=str, default="Sana") | |
parser.add_argument("--txt_path", type=str, default=None) | |
parser.add_argument("--sample_nums", type=int, default=30_000) | |
parser.add_argument( | |
"--dims", | |
type=int, | |
default=2048, | |
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), | |
help="Dimensionality of Inception features to use. By default, uses pool3 features", | |
) | |
parser.add_argument( | |
"--save-stats", | |
action="store_true", | |
help="Generate an npz archive from a directory of samples. The first path is used as input and the second as output.", | |
) | |
parser.add_argument("--stat", action="store_true") | |
parser.add_argument( | |
"--path", type=str, nargs=2, default=["", ""], help="Paths to the generated images or to .npz statistic files" | |
) | |
# online logging setting | |
parser.add_argument("--log_metric", type=str, default="metric") | |
parser.add_argument("--gpu_id", type=int, default=0) | |
parser.add_argument("--log_fid", action="store_true") | |
parser.add_argument("--suffix_label", type=str, default="", help="used for fid online log") | |
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for fid online log") | |
parser.add_argument( | |
"--report_to", | |
type=str, | |
default=None, | |
help=( | |
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
), | |
) | |
parser.add_argument( | |
"--tracker_project_name", | |
type=str, | |
default="t2i-evit-baseline", | |
help=( | |
"The `project_name` argument passed to Accelerator.init_trackers for" | |
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator" | |
), | |
) | |
parser.add_argument( | |
"--name", | |
type=str, | |
default="baseline", | |
help=("Wandb Project Name"), | |
) | |
args = parser.parse_args() | |
return args | |
if __name__ == "__main__": | |
args = parse_args() | |
sample_nums = args.sample_nums | |
if args.stat: | |
if args.device is None: | |
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu") | |
else: | |
device = torch.device(args.device) | |
if args.num_workers is None: | |
try: | |
num_cpus = len(os.sched_getaffinity(0)) | |
except AttributeError: | |
num_cpus = os.cpu_count() | |
num_workers = min(num_cpus, 8) if num_cpus is not None else 0 | |
else: | |
num_workers = args.num_workers | |
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers) | |
else: | |
print(args.path, args.exp_name) | |
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name) | |
fid_result = main() | |
if args.log_fid: | |
tracker(args, fid_result, args.suffix_label, pattern=args.tracker_pattern, metric="FID") | |