zzc0208's picture
Upload 265 files
f1f9265 verified
raw
history blame contribute delete
11.9 kB
import json
import os
import pathlib
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from pytorch_fid.inception import InceptionV3
from scipy import linalg
from torch.nn.functional import adaptive_avg_pool2d
from tools.metrics.utils import tracker
try:
from tqdm import tqdm
except ImportError:
# If tqdm is not available, provide a mock version of it
def tqdm(x):
return x
IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"}
class ImagePathDataset(torch.utils.data.Dataset):
def __init__(self, files, transforms=None):
self.files = files
self.transforms = transforms
def __len__(self):
return len(self.files)
def __getitem__(self, i):
path = self.files[i]
try:
img = Image.open(path)
assert img.mode == "RGB"
if self.transforms is not None:
img = self.transforms(img)
except Exception as e:
raise FileNotFoundError(path, "\n", e)
return img
def get_activations(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1):
model.eval()
if batch_size > len(files):
print("Warning: batch size is bigger than the data size. " "Setting batch size to data size")
batch_size = len(files)
transform = T.Compose(
[
T.Resize(args.img_size), # Image.BICUBIC
T.CenterCrop(args.img_size),
T.ToTensor(),
]
)
dataset = ImagePathDataset(files, transforms=transform)
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers
)
pred_arr = np.empty((len(files), dims))
start_idx = 0
for batch in tqdm(dataloader, desc=f"FID: {args.exp_name}", position=args.gpu_id, leave=True):
batch = batch.to(device)
with torch.no_grad():
pred = model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
pred_arr[start_idx : start_idx + pred.shape[0]] = pred
start_idx = start_idx + pred.shape[0]
return pred_arr
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, "Training and test mean vectors have different lengths"
assert sigma1.shape == sigma2.shape, "Training and test covariances have different dimensions"
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ("fid calculation produces singular product; " "adding %s to diagonal of cov estimates") % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError(f"Imaginary component {m}")
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
def calculate_activation_statistics(files, model, batch_size=50, dims=2048, device="cpu", num_workers=1):
act = get_activations(files, model, batch_size, dims, device, num_workers)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def compute_statistics_of_path(path, model, batch_size, dims, device, num_workers=1, flag="ref"):
if path.endswith(".npz"):
print("loaded from npz files")
with np.load(path) as f:
m, s = f["mu"][:], f["sigma"][:]
elif path.endswith(".json"):
with open(path) as file:
data_dict = json.load(file)
all_lines = list(data_dict.keys())[:sample_nums]
files = []
if isinstance(all_lines, list):
for k in all_lines:
v = data_dict[k]
if "PG-eval-data" in args.img_path:
img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg")
else:
img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg")
files.append(img_path)
elif isinstance(all_lines, dict):
assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files")
for k, v in all_lines.items():
if "PG-eval-data" in args.img_path:
img_path = os.path.join(args.img_path, v["category"], f"{k}.jpg")
else:
img_path = os.path.join(args.img_path, args.exp_name, f"{k}.jpg")
files.append(img_path)
files = sorted(files)
m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers)
else:
path = pathlib.Path(path)
files = sorted([file for ext in IMAGE_EXTENSIONS for file in path.glob(f"*.{ext}")])
m, s = calculate_activation_statistics(files, model, batch_size, dims, device, num_workers)
return m, s
def calculate_fid_given_paths(paths, batch_size, device, dims, num_workers=1):
"""Calculates the FID of two paths"""
for p in paths:
if not os.path.exists(p):
raise RuntimeError("Invalid path: %s" % p)
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).to(device)
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref")
m2, s2 = compute_statistics_of_path(paths[1], model, batch_size, dims, device, num_workers, flag="gen")
fid_value = calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
def save_fid_stats(paths, batch_size, device, dims, num_workers=1):
"""Calculates the FID of two paths"""
if not os.path.exists(paths[0]):
raise RuntimeError("Invalid path: %s" % paths[0])
if os.path.exists(paths[1]):
raise RuntimeError("Existing output file: %s" % paths[1])
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).to(device)
print(f"Saving statistics for {paths[0]}")
m1, s1 = compute_statistics_of_path(paths[0], model, batch_size, dims, device, num_workers, flag="ref")
np.savez_compressed(paths[1], mu=m1, sigma=s1)
def main():
txt_path = args.txt_path if args.txt_path is not None else args.img_path
save_txt_path = os.path.join(txt_path, f"{args.exp_name}_sample{sample_nums}.txt")
if os.path.exists(save_txt_path):
with open(save_txt_path) as f:
fid_value = f.readlines()[0].strip()
print(f"FID {fid_value}: {args.exp_name}")
return {args.exp_name: float(fid_value)}
if args.device is None:
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
else:
device = torch.device(args.device)
if args.num_workers is None:
try:
num_cpus = len(os.sched_getaffinity(0))
except AttributeError:
num_cpus = os.cpu_count()
num_workers = min(num_cpus, 8) if num_cpus is not None else 0
else:
num_workers = args.num_workers
if args.save_stats:
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers)
return
fid_value = calculate_fid_given_paths(args.path, args.batch_size, device, args.dims, num_workers)
print(f"FID {fid_value}: {args.exp_name}")
with open(save_txt_path, "w") as file:
file.write(str(fid_value))
return {args.exp_name: fid_value}
def parse_args():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--batch-size", type=int, default=50, help="Batch size to use")
parser.add_argument(
"--num-workers", type=int, help="Number of processes to use for data loading. Defaults to `min(8, num_cpus)`"
)
parser.add_argument("--img_size", type=int, default=512)
parser.add_argument("--device", type=str, default="cuda", help="Device to use. Like cuda, cuda:0 or cpu")
parser.add_argument("--img_path", type=str, default=None)
parser.add_argument("--exp_name", type=str, default="Sana")
parser.add_argument("--txt_path", type=str, default=None)
parser.add_argument("--sample_nums", type=int, default=30_000)
parser.add_argument(
"--dims",
type=int,
default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help="Dimensionality of Inception features to use. By default, uses pool3 features",
)
parser.add_argument(
"--save-stats",
action="store_true",
help="Generate an npz archive from a directory of samples. The first path is used as input and the second as output.",
)
parser.add_argument("--stat", action="store_true")
parser.add_argument(
"--path", type=str, nargs=2, default=["", ""], help="Paths to the generated images or to .npz statistic files"
)
# online logging setting
parser.add_argument("--log_metric", type=str, default="metric")
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--log_fid", action="store_true")
parser.add_argument("--suffix_label", type=str, default="", help="used for fid online log")
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for fid online log")
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="t2i-evit-baseline",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--name",
type=str,
default="baseline",
help=("Wandb Project Name"),
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
sample_nums = args.sample_nums
if args.stat:
if args.device is None:
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
else:
device = torch.device(args.device)
if args.num_workers is None:
try:
num_cpus = len(os.sched_getaffinity(0))
except AttributeError:
num_cpus = os.cpu_count()
num_workers = min(num_cpus, 8) if num_cpus is not None else 0
else:
num_workers = args.num_workers
save_fid_stats(args.path, args.batch_size, device, args.dims, num_workers)
else:
print(args.path, args.exp_name)
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
fid_result = main()
if args.log_fid:
tracker(args, fid_result, args.suffix_label, pattern=args.tracker_pattern, metric="FID")