Spaces:
Runtime error
Runtime error
# Copyright 2024 MIT Han Lab | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from typing import Optional | |
import ipdb | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from .triton_lite_mla_kernels.linear_relu_fwd import linear_relu_fwd | |
from .triton_lite_mla_kernels.mm import matmul # for autocast | |
from .triton_lite_mla_kernels.pad_vk_mm_fwd import pad_vk_mm_fwd | |
from .triton_lite_mla_kernels.proj_divide_bwd import proj_divide_bwd | |
from .triton_lite_mla_kernels.vk_mm_relu_bwd import vk_mm_relu_bwd | |
from .triton_lite_mla_kernels.vk_q_mm_divide_fwd import vk_q_mm_divide_fwd | |
from .triton_lite_mla_kernels.vk_q_mm_relu_bwd import vk_q_mm_relu_bwd | |
class TritonLiteMLAFunction(torch.autograd.Function): | |
def forward( | |
ctx, | |
x: torch.Tensor, | |
qkv_weight: torch.Tensor, | |
proj_weight: torch.Tensor, | |
proj_bias: Optional[torch.Tensor], | |
num_heads: int, | |
head_dim: int, | |
eps: float, | |
) -> torch.Tensor: | |
ctx.x_dtype, ctx.qkv_weight_dtype, ctx.proj_dtype = x.dtype, qkv_weight.dtype, proj_weight.dtype | |
if torch.is_autocast_enabled(): | |
autocast_dtype = torch.get_autocast_gpu_dtype() | |
x = x.to(autocast_dtype) | |
qkv_weight = qkv_weight.to(autocast_dtype) | |
proj_weight = proj_weight.to(autocast_dtype) | |
if proj_bias is not None: | |
proj_bias = proj_bias.to(autocast_dtype) | |
B, N, C = x.shape | |
qkv, relu_mask = linear_relu_fwd(x, qkv_weight) # B, N, 3*C. autocast is processed here | |
qkv, relu_mask = qkv.view(B, N, 3, C), relu_mask.view(B, N, 3, C) | |
q, k, v = qkv.unbind(2) # B, N, C | |
k = k.reshape(B, N, num_heads, head_dim) | |
v = v.reshape(B, N, num_heads, head_dim) | |
q = q.reshape(B, N, num_heads, head_dim) | |
vk = pad_vk_mm_fwd(v, k, torch.float, torch.float) | |
proj_input, vk_q = vk_q_mm_divide_fwd(vk, q, eps, torch.float, qkv.dtype) | |
proj_input = proj_input.view(B, N, C) | |
y = F.linear(proj_input, proj_weight, proj_bias) | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1] or ctx.needs_input_grad[2] or ctx.needs_input_grad[3]: | |
ctx.save_for_backward(x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight) | |
ctx.eps = eps | |
if torch.get_autocast_gpu_dtype() == torch.float16: | |
y = y.clip(-65504, 65504) | |
return y | |
def backward(ctx, grad_y: torch.Tensor): | |
x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight = ctx.saved_tensors | |
B, N, H, C1 = vk_q.shape | |
C = C1 - 1 | |
# ipdb.set_trace() | |
grad_proj_weight = ( | |
(grad_y.reshape(-1, H * C).T @ proj_input.view(-1, H * C)).to(ctx.proj_dtype) | |
if ctx.needs_input_grad[2] | |
else None | |
) | |
grad_proj_bias = grad_y.sum((0, 1)).to(ctx.proj_dtype) if ctx.needs_input_grad[3] else None | |
# | |
grad_vk_q = proj_divide_bwd(grad_y, proj_weight, vk_q, ctx.eps) | |
del grad_y, vk_q | |
grad_qkv = torch.empty(B, N, 3, H, C, dtype=q.dtype, device=q.device) | |
grad_vk = vk_q_mm_relu_bwd(grad_vk_q, vk, q, relu_mask[:, :, 0].view(B, N, H, C), grad_qkv[:, :, 0]) | |
del grad_vk_q, vk | |
vk_mm_relu_bwd(grad_vk, k, v, relu_mask[:, :, 1].view(B, N, H, C), grad_qkv[:, :, 1], grad_qkv[:, :, 2]) | |
del grad_vk, q, k, v, relu_mask | |
grad_qkv_weight = ( | |
(grad_qkv.view(B * N, 3 * H * C).T @ x.view(B * N, H * C)).to(ctx.qkv_weight_dtype) | |
if ctx.needs_input_grad[1] | |
else None | |
) | |
grad_x = (grad_qkv.view(B, N, 3 * H * C) @ qkv_weight).to(ctx.x_dtype) if ctx.needs_input_grad[0] else None | |
del grad_qkv | |
return grad_x, grad_qkv_weight, grad_proj_weight, grad_proj_bias, None, None, None | |
class TritonLiteMLA(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
eps=1e-15, | |
use_bias=False, | |
): | |
super().__init__() | |
self.dim, self.num_heads, self.head_dim, self.eps = dim, num_heads, dim // num_heads, eps | |
if use_bias: | |
raise NotImplementedError(f"use_bias is not supported for TritonLiteMLA") | |
self.qkv = nn.Linear(dim, dim * 3, bias=use_bias) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: | |
return TritonLiteMLAFunction.apply( | |
x, self.qkv.weight, self.proj.weight, self.proj.bias, self.num_heads, self.head_dim, self.eps | |
) | |
def module_str(self) -> str: | |
_str = type(self).__name__ + "(" | |
eps = f"{self.eps:.1E}" | |
_str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}" | |
return _str | |
def __repr__(self): | |
return f"EPS{self.eps}-" + super().__repr__() | |