Spaces:
Runtime error
Runtime error
# Copyright 2024 MIT Han Lab | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import torch | |
from torch import nn | |
from .nn.act import build_act, get_act_name | |
from .nn.conv import ConvLayer | |
from .nn.norm import build_norm, get_norm_name | |
from .utils.model import get_same_padding, val2tuple | |
class MBConvPreGLU(nn.Module): | |
def __init__( | |
self, | |
in_dim: int, | |
out_dim: int, | |
kernel_size=3, | |
stride=1, | |
mid_dim=None, | |
expand=6, | |
padding: int or None = None, | |
use_bias=False, | |
norm=(None, None, "ln2d"), | |
act=("silu", "silu", None), | |
): | |
super().__init__() | |
use_bias = val2tuple(use_bias, 3) | |
norm = val2tuple(norm, 3) | |
act = val2tuple(act, 3) | |
mid_dim = mid_dim or round(in_dim * expand) | |
self.inverted_conv = ConvLayer( | |
in_dim, | |
mid_dim * 2, | |
1, | |
use_bias=use_bias[0], | |
norm=norm[0], | |
act=None, | |
) | |
self.glu_act = build_act(act[0], inplace=False) | |
self.depth_conv = ConvLayer( | |
mid_dim, | |
mid_dim, | |
kernel_size, | |
stride=stride, | |
groups=mid_dim, | |
padding=padding, | |
use_bias=use_bias[1], | |
norm=norm[1], | |
act=act[1], | |
) | |
self.point_conv = ConvLayer( | |
mid_dim, | |
out_dim, | |
1, | |
use_bias=use_bias[2], | |
norm=norm[2], | |
act=act[2], | |
) | |
def forward(self, x: torch.Tensor, HW=None) -> torch.Tensor: | |
B, N, C = x.shape | |
if HW is None: | |
H = W = int(N**0.5) | |
else: | |
H, W = HW | |
x = x.reshape(B, H, W, C).permute(0, 3, 1, 2) | |
x = self.inverted_conv(x) | |
x, gate = torch.chunk(x, 2, dim=1) | |
gate = self.glu_act(gate) | |
x = x * gate | |
x = self.depth_conv(x) | |
x = self.point_conv(x) | |
x = x.reshape(B, C, N).permute(0, 2, 1) | |
return x | |
def module_str(self) -> str: | |
_str = f"{self.depth_conv.kernel_size}{type(self).__name__}(" | |
_str += f"in={self.inverted_conv.in_dim},mid={self.depth_conv.in_dim},out={self.point_conv.out_dim},s={self.depth_conv.stride}" | |
_str += ( | |
f",norm={get_norm_name(self.inverted_conv.norm)}" | |
f"+{get_norm_name(self.depth_conv.norm)}" | |
f"+{get_norm_name(self.point_conv.norm)}" | |
) | |
_str += ( | |
f",act={get_act_name(self.inverted_conv.act)}" | |
f"+{get_act_name(self.depth_conv.act)}" | |
f"+{get_act_name(self.point_conv.act)}" | |
) | |
_str += f",glu_act={get_act_name(self.glu_act)})" | |
return _str | |