File size: 16,776 Bytes
f1f9265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# SPDX-License-Identifier: Apache-2.0
import argparse
import json
import os
import re
import subprocess
import tarfile
import warnings
from dataclasses import dataclass, field
from typing import List, Optional

import pyrallis
import torch
from torchvision.utils import save_image
from tqdm import tqdm

warnings.filterwarnings("ignore")  # ignore warning

import cv2
from termcolor import colored

from diffusion import DPMS
from diffusion.data.datasets.utils import ASPECT_RATIO_512_TEST, ASPECT_RATIO_1024_TEST
from diffusion.model.builder import build_model, get_tokenizer_and_text_encoder, get_vae, vae_decode, vae_encode
from diffusion.model.utils import prepare_prompt_ar
from diffusion.utils.config import SanaConfig, model_init_config
from diffusion.utils.logger import get_root_logger
from tools.controlnet.utils import get_scribble_map, transform_control_signal
from tools.download import find_model


def set_env(seed=0, latent_size=256):
    torch.manual_seed(seed)
    torch.set_grad_enabled(False)
    for _ in range(30):
        torch.randn(1, 4, latent_size, latent_size)


def get_dict_chunks(data, bs):
    keys = []
    for k in data:
        keys.append(k)
        if len(keys) == bs:
            yield keys
            keys = []
    if keys:
        yield keys


def create_tar(data_path):
    tar_path = f"{data_path}.tar"
    with tarfile.open(tar_path, "w") as tar:
        tar.add(data_path, arcname=os.path.basename(data_path))
    print(f"Created tar file: {tar_path}")
    return tar_path


def delete_directory(exp_name):
    if os.path.exists(exp_name):
        subprocess.run(["rm", "-r", exp_name], check=True)
        print(f"Deleted directory: {exp_name}")


def create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type):
    save_root = os.path.join(
        img_save_dir,
        f"{dataset}_epoch{epoch_name}_step{step_name}_scale{args.cfg_scale}"
        f"_step{sample_steps}_size{args.image_size}_bs{args.bs}_samp{args.sampling_algo}"
        f"_seed{args.seed}_{str(weight_dtype).split('.')[-1]}",
    )

    if args.pag_scale != 1.0:
        save_root = save_root.replace(f"scale{args.cfg_scale}", f"scale{args.cfg_scale}_pagscale{args.pag_scale}")
    if flow_shift != 1.0:
        save_root += f"_flowshift{flow_shift}"
    if guidance_type != "classifier-free":
        save_root += f"_{guidance_type}"
    if args.interval_guidance[0] != 0 and args.interval_guidance[1] != 1:
        save_root += f"_intervalguidance{args.interval_guidance[0]}{args.interval_guidance[1]}"

    save_root += f"_imgnums{args.sample_nums}" + args.add_label
    return save_root


def guidance_type_select(default_guidance_type, pag_scale, attn_type):
    guidance_type = default_guidance_type
    if not (pag_scale > 1.0 and attn_type == "linear"):
        logger.info("Setting back to classifier-free")
        guidance_type = "classifier-free"
    return guidance_type


def get_ar_from_ref_image(ref_image_path):
    def reduce_ratio(h, w):
        def gcd(a, b):
            while b:
                a, b = b, a % b
            return a

        divisor = gcd(h, w)
        return f"{h // divisor}:{w // divisor}"

    ref_image = cv2.imread(ref_image_path)
    h, w = ref_image.shape[:2]
    return reduce_ratio(h, w)


@torch.inference_mode()
def visualize(config, args, model, items, bs, sample_steps, cfg_scale, pag_scale=1.0):
    assert bs == 1, "only support batch size 1 currently"

    if isinstance(items, dict):
        get_chunks = get_dict_chunks
    else:
        from diffusion.data.datasets.utils import get_chunks

    generator = torch.Generator(device=device).manual_seed(args.seed)
    tqdm_desc = f"{save_root.split('/')[-1]} Using GPU: {args.gpu_id}: {args.start_index}-{args.end_index}"
    for chunk in tqdm(list(get_chunks(items, bs)), desc=tqdm_desc, unit="batch", position=args.gpu_id, leave=True):
        # data prepare
        prompts, hw, ar = (
            [],
            torch.tensor([[args.image_size, args.image_size]], dtype=torch.float, device=device).repeat(bs, 1),
            torch.tensor([[1.0]], device=device).repeat(bs, 1),
        )

        if "ref_image_path" in chunk[0]:
            prompt, ref_image_path = chunk[0]["prompt"], chunk[0]["ref_image_path"]
            args.reference_image_path = ref_image_path
            ar = get_ar_from_ref_image(args.reference_image_path)
        else:
            assert "ref_controlmap_path" in chunk[0], "neither ref_image_path nor ref_controlmap_path is provided"
            prompt, ref_controlmap_path = chunk[0]["prompt"], chunk[0]["ref_controlmap_path"]
            args.controlmap_path = ref_controlmap_path
            ar = get_ar_from_ref_image(args.controlmap_path)

        prompt += f" --ar {ar}"
        prompt_clean, _, hw, ar, custom_hw = prepare_prompt_ar(prompt, base_ratios, device=device, show=False)
        latent_size_h, latent_size_w = (
            (int(hw[0, 0] // config.vae.vae_downsample_rate), int(hw[0, 1] // config.vae.vae_downsample_rate))
            if args.image_size == 1024
            else (latent_size, latent_size)
        )
        prompts.append(prompt_clean.strip())

        # check exists
        save_file_name = f"{prompts[0]}.jpg"
        save_path = os.path.join(save_root, save_file_name)
        if os.path.exists(save_path):
            # make sure the noise is totally same
            torch.randn(bs, config.vae.vae_latent_dim, latent_size_h, latent_size_w, device=device, generator=generator)
            continue

        # prepare text feature
        if not config.text_encoder.chi_prompt:
            max_length_all = config.text_encoder.model_max_length
            prompts_all = prompts
        else:
            chi_prompt = "\n".join(config.text_encoder.chi_prompt)
            prompts_all = [chi_prompt + prompt for prompt in prompts]
            num_chi_prompt_tokens = len(tokenizer.encode(chi_prompt))
            max_length_all = (
                num_chi_prompt_tokens + config.text_encoder.model_max_length - 2
            )  # magic number 2: [bos], [_]

        caption_token = tokenizer(
            prompts_all, max_length=max_length_all, padding="max_length", truncation=True, return_tensors="pt"
        ).to(device)
        select_index = [0] + list(range(-config.text_encoder.model_max_length + 1, 0))
        caption_embs = text_encoder(caption_token.input_ids, caption_token.attention_mask)[0][:, None][
            :, :, select_index
        ]
        emb_masks = caption_token.attention_mask[:, select_index]
        null_y = null_caption_embs.repeat(len(prompts), 1, 1)[:, None]

        # start sampling
        with torch.no_grad():
            n = len(prompts)
            z = torch.randn(
                n, config.vae.vae_latent_dim, latent_size_h, latent_size_w, device=device, generator=generator
            )
            model_kwargs = dict(data_info={"img_hw": hw, "aspect_ratio": ar}, mask=emb_masks)

            if args.reference_image_path is not None:
                input_image = cv2.imread(args.reference_image_path)
                control_signal = get_scribble_map(
                    input_image=input_image,
                    det="Scribble_HED",
                    detect_resolution=int(hw.min()),
                    thickness=int(args.thickness),
                )
                control_signal = transform_control_signal(control_signal, hw).to(device).to(weight_dtype)
            else:
                control_signal = transform_control_signal(args.controlmap_path, hw).to(device).to(weight_dtype)

            control_signal_latent = vae_encode(
                config.vae.vae_type, vae, control_signal, config.vae.sample_posterior, device
            )

            model_kwargs["control_signal"] = control_signal_latent
            if args.sampling_algo == "flow_dpm-solver":
                dpm_solver = DPMS(
                    model.forward_with_dpmsolver,
                    condition=caption_embs,
                    uncondition=null_y,
                    guidance_type=guidance_type,
                    cfg_scale=cfg_scale,
                    pag_scale=pag_scale,
                    pag_applied_layers=pag_applied_layers,
                    model_type="flow",
                    model_kwargs=model_kwargs,
                    schedule="FLOW",
                    interval_guidance=args.interval_guidance,
                )
                samples = dpm_solver.sample(
                    z,
                    steps=sample_steps,
                    order=2,
                    skip_type="time_uniform_flow",
                    method="multistep",
                    flow_shift=flow_shift,
                )
            else:
                raise ValueError(f"{args.sampling_algo} is not defined")

        samples = samples.to(weight_dtype)
        samples = vae_decode(config.vae.vae_type, vae, samples)
        torch.cuda.empty_cache()

        return dict(samples=samples, control_signal=control_signal)


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, help="config")
    parser.add_argument("--model_path", default=None, type=str, help="Path to the model file (optional)")

    return parser.parse_known_args()[0]


@dataclass
class SanaInference(SanaConfig):
    config: Optional[str] = ""
    model_path: Optional[str] = "output/pretrained_models/Sana_1600M_1024px.pth"
    work_dir: str = "output/inference"
    version: str = "sigma"
    txt_file: str = "asset/samples/samples_mini.txt"
    json_file: Optional[str] = None
    sample_nums: int = 100_000
    bs: int = 1
    cfg_scale: float = 4.5
    pag_scale: float = 1.0
    sampling_algo: str = "flow_dpm-solver"
    seed: int = 0
    dataset: str = "custom_controlnet"
    step: int = -1
    add_label: str = ""
    tar_and_del: bool = False
    exist_time_prefix: str = ""
    gpu_id: int = 0
    start_index: int = 0
    end_index: int = 30_000
    interval_guidance: List[float] = field(default_factory=lambda: [0, 1])
    ablation_selections: Optional[List[float]] = None
    ablation_key: Optional[str] = None
    debug: bool = False
    if_save_dirname: bool = False
    # controlnet
    reference_image_path: Optional[str] = None
    controlmap_path: Optional[str] = None
    thickness: int = 2
    blend_alpha: float = 0.0


if __name__ == "__main__":

    args = get_args()
    config = args = pyrallis.parse(config_class=SanaInference, config_path=args.config)

    args.image_size = config.model.image_size

    if args.json_file is None:
        assert (args.reference_image_path is None) != (
            args.controlmap_path is None
        ), "only one of reference_image_path/controlmap_path can be None"

    set_env(args.seed, args.image_size // config.vae.vae_downsample_rate)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger = get_root_logger()

    # only support fixed latent size currently
    latent_size = args.image_size // config.vae.vae_downsample_rate
    max_sequence_length = config.text_encoder.model_max_length
    pe_interpolation = config.model.pe_interpolation
    micro_condition = config.model.micro_condition
    flow_shift = config.scheduler.flow_shift
    pag_applied_layers = config.model.pag_applied_layers
    guidance_type = "classifier-free_PAG"
    assert (
        isinstance(args.interval_guidance, list)
        and len(args.interval_guidance) == 2
        and args.interval_guidance[0] <= args.interval_guidance[1]
    )
    args.interval_guidance = [max(0, args.interval_guidance[0]), min(1, args.interval_guidance[1])]
    sample_steps_dict = {"flow_dpm-solver": 20, "flow_euler": 28}
    sample_steps = args.step if args.step != -1 else sample_steps_dict[args.sampling_algo]
    if config.model.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif config.model.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
    elif config.model.mixed_precision == "fp32":
        weight_dtype = torch.float32
    else:
        raise ValueError(f"weigh precision {config.model.mixed_precision} is not defined")
    logger.info(f"Inference with {weight_dtype}, default guidance_type: {guidance_type}, flow_shift: {flow_shift}")

    vae = get_vae(config.vae.vae_type, config.vae.vae_pretrained, device).to(weight_dtype)
    tokenizer, text_encoder = get_tokenizer_and_text_encoder(name=config.text_encoder.text_encoder_name, device=device)

    null_caption_token = tokenizer(
        "", max_length=max_sequence_length, padding="max_length", truncation=True, return_tensors="pt"
    ).to(device)
    null_caption_embs = text_encoder(null_caption_token.input_ids, null_caption_token.attention_mask)[0]

    # model setting
    model_kwargs = model_init_config(config, latent_size=latent_size)
    model = build_model(
        config.model.model, use_fp32_attention=config.model.get("fp32_attention", False), **model_kwargs
    ).to(device)
    logger.info(
        f"{model.__class__.__name__}:{config.model.model}, Model Parameters: {sum(p.numel() for p in model.parameters()):,}"
    )
    logger.info("Generating sample from ckpt: %s" % args.model_path)
    state_dict = find_model(args.model_path)
    if "pos_embed" in state_dict["state_dict"]:
        del state_dict["state_dict"]["pos_embed"]

    missing, unexpected = model.load_state_dict(state_dict["state_dict"], strict=False)
    logger.warning(f"Missing keys: {missing}")
    logger.warning(f"Unexpected keys: {unexpected}")
    model.eval().to(weight_dtype)
    base_ratios = eval(f"ASPECT_RATIO_{args.image_size}_TEST")
    args.sampling_algo = (
        args.sampling_algo
        if ("flow" not in args.model_path or args.sampling_algo == "flow_dpm-solver")
        else "flow_euler"
    )

    if args.work_dir is None:
        work_dir = (
            f"/{os.path.join(*args.model_path.split('/')[:-2])}"
            if args.model_path.startswith("/")
            else os.path.join(*args.model_path.split("/")[:-2])
        )
        img_save_dir = os.path.join(str(work_dir), "vis")
    else:
        img_save_dir = args.work_dir

    dict_prompt = args.json_file is not None
    if dict_prompt:
        data_dict = json.load(open(args.json_file))
        items = data_dict
        args.sample_nums = len(items)
    else:
        raise ValueError("json_file is not provided")

    match = re.search(r".*epoch_(\d+).*step_(\d+).*", args.model_path)
    epoch_name, step_name = match.groups() if match else ("unknown", "unknown")

    os.umask(0o000)
    os.makedirs(img_save_dir, exist_ok=True)
    logger.info(f"Sampler {args.sampling_algo}")

    dataset = "MJHQ-30K" if args.json_file and "MJHQ-30K" in args.json_file else args.dataset

    guidance_type = guidance_type_select(guidance_type, args.pag_scale, config.model.attn_type)
    logger.info(f"Inference with {weight_dtype}, guidance_type: {guidance_type}, flow_shift: {flow_shift}")
    save_root = create_save_root(args, dataset, epoch_name, step_name, sample_steps, guidance_type)
    os.makedirs(save_root, exist_ok=True)

    if args.debug:
        print(f"debug mode, use fixed items")
        pass

    for idx, item in enumerate(items):
        # args.seed = idx
        results = visualize(
            config=config,
            args=args,
            model=model,
            items=[item],
            bs=args.bs,
            sample_steps=sample_steps,
            cfg_scale=args.cfg_scale,
            pag_scale=args.pag_scale,
        )
        os.umask(0o000)
        sample, control_signal = results["samples"][0], results["control_signal"][0]
        # 混合mask和image
        if args.blend_alpha > 0:
            print(f"blend image and mask with alpha: {args.blend_alpha}")
            sample = sample * (1 - args.blend_alpha) + control_signal * args.blend_alpha

        save_file_name = f"{idx}_{item['prompt'][:100]}.jpg"
        save_path = os.path.join(save_root, save_file_name)
        save_image(sample, save_path, nrow=1, normalize=True, value_range=(-1, 1))

    print(
        colored(f"Sana inference has finished. Results stored at ", "green"),
        colored(f"{img_save_dir}", attrs=["bold"]),
        ".",
    )