from huggingface_hub import InferenceClient import random from flask import Flask, request, jsonify, redirect, url_for from flask_cors import CORS from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") connection_string = "postgresql://data_owner:PFAnX9oJp4wV@ep-green-heart-a78sxj65.ap-southeast-2.aws.neon.tech/figurecircle?sslmode=require" engine = create_engine(connection_string) Session = sessionmaker(bind=engine) app = Flask(__name__) CORS(app) @app.route('/') def home(): return jsonify({"message": "Welcome to the Recommendation API!"}) def format_prompt(message): # Generate a random user prompt and bot response pair user_prompt = "UserPrompt" bot_response = "BotResponse" return f"[INST] {user_prompt} [/INST] {bot_response} [INST] {message} [/INST]" @app.route('/ai_mentor', methods=['POST']) def ai_mentor(): data = request.get_json() message = data.get('message') if not message: return jsonify({"message": "Missing message"}), 400 temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) # Define prompt for the conversation prompt = f""" prompt: Act as an mentor User: {message}""" formatted_prompt = format_prompt(prompt) try: # Generate response from the Language Model response = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"response": response}), 200 except Exception as e: return jsonify({"message": f"Failed to process request: {str(e)}"}), 500 @app.route('/get_course', methods=['POST']) def get_course(): temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 content = request.json # user_degree = content.get('degree') # Uncomment this line user_stream = content.get('stream') generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) prompt = f""" prompt: You need to act like as recommendation engine for course recommendation for a student. Below are current details. Degree: {user_degree} Stream: {user_stream} Based on current details recommend the courses for higher degree. Note: Output should be list in below format: [course1, course2, course3,...] Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks """ formatted_prompt = format_prompt(prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"ans": stream}) @app.route('/get_mentor', methods=['POST']) def get_mentor(): temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 content = request.json # user_degree = content.get('degree') # Uncomment this line user_stream = content.get('stream') courses = content.get('courses') session = Session() # Query verified mentors verified_mentors = session.query(Mentor).filter_by(verified=True).all() mentor_list = [{"id": mentor.id, "mentor_name": mentor.mentor_name, "skills": mentor.skills, "qualification": mentor.qualification, "experience": mentor.experience, "verified": mentor.verified} for mentor in verified_mentors] session.close() mentors_data= mentor_list temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) prompt = f""" prompt: You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached. Degree: {user_degree} Stream: {user_stream} courses opted:{courses} Mentor list= {mentors_data} Based on above details recommend the mentor that realtes to above details Note: Output should be list in below format: [mentor1,mentor2,mentor3,...] """ formatted_prompt = format_prompt(prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"ans": stream}) @app.route('/get_streams', methods=['GET']) def get_streams(): temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) prompt = f""" prompt: You need to act like as recommendation engine. List all 40+ streams/branches in like computer science, chemical engineering, aerospace , etc Note: Output should be list in below format: [branch1, branch2, branch3,...] Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks """ formatted_prompt = format_prompt(prompt) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"ans": stream}) @app.route('/get_education_profiles', methods=['GET']) def get_education_profiles(): temperature = 0.9 max_new_tokens = 256 top_p = 0.95 repetition_penalty = 1.0 generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) sectors = ["engineering", "medical", "arts", "commerce", "science", "management"] # Example sectors prompt = f"""prompt: You need to act like a recommendation engine. List all education-related profiles in sectors like {', '.join(sectors)}. Note: Output should be a list in the below format: [profile1, profile2, profile3,...] Return only the answer, not the prompt or unnecessary stuff, and don't add any special characters or punctuation marks. """ formatted_prompt = format_prompt(prompt) education_profiles = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False) return jsonify({"ans": education_profiles}) if __name__ == '__main__': app.run(debug=True)