Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,206 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
if torch.cuda.is_available()
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
]
|
45 |
-
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
|
49 |
-
|
50 |
-
}
|
51 |
-
"""
|
52 |
-
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
|
55 |
-
else:
|
56 |
-
|
57 |
-
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
|
97 |
-
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
-
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
demo.queue().launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
from rembg import remove
|
8 |
+
|
9 |
+
# Загрузка моделей
|
10 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
|
11 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
12 |
+
"runwayml/stable-diffusion-v1-5",
|
13 |
+
controlnet=controlnet,
|
14 |
+
torch_dtype=torch.float16
|
15 |
+
).to("cuda")
|
16 |
+
|
17 |
+
def generate_background(image, prompt, negative_prompt):
|
18 |
+
# Удаление фона
|
19 |
+
image = Image.open(image).convert("RGBA")
|
20 |
+
output_image = remove(image)
|
21 |
+
|
22 |
+
# Преобразование изображения объекта в контурное изображение
|
23 |
+
foreground = output_image.convert("L")
|
24 |
+
_, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
|
25 |
+
contour_image = Image.fromarray(contour)
|
26 |
+
|
27 |
+
# Генерация фона
|
28 |
+
generator = torch.Generator(device="cuda").manual_seed(1024)
|
29 |
+
result = pipe(
|
30 |
+
prompt=prompt,
|
31 |
+
negative_prompt=negative_prompt,
|
32 |
+
control_image=contour_image,
|
33 |
+
generator=generator,
|
34 |
+
num_inference_steps=50
|
35 |
+
)
|
36 |
+
|
37 |
+
background = result.images[0].convert("RGBA")
|
38 |
+
|
39 |
+
# Изменение размера фона до размера переднего плана
|
40 |
+
background = background.resize(output_image.size)
|
41 |
+
|
42 |
+
# Наложение изображений
|
43 |
+
composite = Image.alpha_composite(background, output_image)
|
44 |
+
|
45 |
+
return composite
|
46 |
+
|
47 |
+
# Определение интерфейса Gradio
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=generate_background,
|
50 |
+
inputs=[
|
51 |
+
gr.inputs.Image(type="file", label="Загрузите изображение"),
|
52 |
+
gr.inputs.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
|
53 |
+
gr.inputs.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
|
54 |
+
],
|
55 |
+
outputs=gr.outputs.Image(type="pil", label="Результат")
|
56 |
+
)
|
57 |
+
|
58 |
+
# Запуск интерфейса
|
59 |
+
iface.launch()
|
60 |
|
61 |
+
# import gradio as gr
|
62 |
+
# import numpy as np
|
63 |
+
# import random
|
64 |
+
# from diffusers import DiffusionPipeline
|
65 |
+
# import torch
|
66 |
|
67 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
# if torch.cuda.is_available():
|
70 |
+
# torch.cuda.max_memory_allocated(device=device)
|
71 |
+
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
72 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
73 |
+
# pipe = pipe.to(device)
|
74 |
+
# else:
|
75 |
+
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
76 |
+
# pipe = pipe.to(device)
|
77 |
|
78 |
+
# MAX_SEED = np.iinfo(np.int32).max
|
79 |
+
# MAX_IMAGE_SIZE = 1024
|
80 |
|
81 |
+
# def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
82 |
+
|
83 |
+
# if randomize_seed:
|
84 |
+
# seed = random.randint(0, MAX_SEED)
|
85 |
|
86 |
+
# generator = torch.Generator().manual_seed(seed)
|
87 |
|
88 |
+
# image = pipe(
|
89 |
+
# prompt = prompt,
|
90 |
+
# negative_prompt = negative_prompt,
|
91 |
+
# guidance_scale = guidance_scale,
|
92 |
+
# num_inference_steps = num_inference_steps,
|
93 |
+
# width = width,
|
94 |
+
# height = height,
|
95 |
+
# generator = generator
|
96 |
+
# ).images[0]
|
97 |
|
98 |
+
# return image
|
99 |
+
|
100 |
+
# examples = [
|
101 |
+
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
102 |
+
# "An astronaut riding a green horse",
|
103 |
+
# "A delicious ceviche cheesecake slice",
|
104 |
+
# ]
|
105 |
+
|
106 |
+
# css="""
|
107 |
+
# #col-container {
|
108 |
+
# margin: 0 auto;
|
109 |
+
# max-width: 520px;
|
110 |
+
# }
|
111 |
+
# """
|
112 |
+
|
113 |
+
# if torch.cuda.is_available():
|
114 |
+
# power_device = "GPU"
|
115 |
+
# else:
|
116 |
+
# power_device = "CPU"
|
117 |
+
|
118 |
+
# with gr.Blocks(css=css) as demo:
|
119 |
|
120 |
+
# with gr.Column(elem_id="col-container"):
|
121 |
+
# gr.Markdown(f"""
|
122 |
+
# # Text-to-Image Gradio Template
|
123 |
+
# Currently running on {power_device}.
|
124 |
+
# """)
|
125 |
|
126 |
+
# with gr.Row():
|
127 |
|
128 |
+
# prompt = gr.Text(
|
129 |
+
# label="Prompt",
|
130 |
+
# show_label=False,
|
131 |
+
# max_lines=1,
|
132 |
+
# placeholder="Enter your prompt",
|
133 |
+
# container=False,
|
134 |
+
# )
|
135 |
|
136 |
+
# run_button = gr.Button("Run", scale=0)
|
137 |
|
138 |
+
# result = gr.Image(label="Result", show_label=False)
|
139 |
|
140 |
+
# with gr.Accordion("Advanced Settings", open=False):
|
141 |
|
142 |
+
# negative_prompt = gr.Text(
|
143 |
+
# label="Negative prompt",
|
144 |
+
# max_lines=1,
|
145 |
+
# placeholder="Enter a negative prompt",
|
146 |
+
# visible=False,
|
147 |
+
# )
|
148 |
|
149 |
+
# seed = gr.Slider(
|
150 |
+
# label="Seed",
|
151 |
+
# minimum=0,
|
152 |
+
# maximum=MAX_SEED,
|
153 |
+
# step=1,
|
154 |
+
# value=0,
|
155 |
+
# )
|
156 |
|
157 |
+
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
158 |
|
159 |
+
# with gr.Row():
|
160 |
|
161 |
+
# width = gr.Slider(
|
162 |
+
# label="Width",
|
163 |
+
# minimum=256,
|
164 |
+
# maximum=MAX_IMAGE_SIZE,
|
165 |
+
# step=32,
|
166 |
+
# value=512,
|
167 |
+
# )
|
168 |
|
169 |
+
# height = gr.Slider(
|
170 |
+
# label="Height",
|
171 |
+
# minimum=256,
|
172 |
+
# maximum=MAX_IMAGE_SIZE,
|
173 |
+
# step=32,
|
174 |
+
# value=512,
|
175 |
+
# )
|
176 |
|
177 |
+
# with gr.Row():
|
178 |
|
179 |
+
# guidance_scale = gr.Slider(
|
180 |
+
# label="Guidance scale",
|
181 |
+
# minimum=0.0,
|
182 |
+
# maximum=10.0,
|
183 |
+
# step=0.1,
|
184 |
+
# value=0.0,
|
185 |
+
# )
|
186 |
|
187 |
+
# num_inference_steps = gr.Slider(
|
188 |
+
# label="Number of inference steps",
|
189 |
+
# minimum=1,
|
190 |
+
# maximum=12,
|
191 |
+
# step=1,
|
192 |
+
# value=2,
|
193 |
+
# )
|
194 |
|
195 |
+
# gr.Examples(
|
196 |
+
# examples = examples,
|
197 |
+
# inputs = [prompt]
|
198 |
+
# )
|
199 |
+
|
200 |
+
# run_button.click(
|
201 |
+
# fn = infer,
|
202 |
+
# inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
203 |
+
# outputs = [result]
|
204 |
+
# )
|
205 |
|
206 |
+
# demo.queue().launch()
|