Sveta commited on
Commit
b7d5a98
·
verified ·
1 Parent(s): 7dc6767

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +179 -119
app.py CHANGED
@@ -1,146 +1,206 @@
1
  import gradio as gr
2
- import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
17
 
18
- MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
 
 
 
 
 
 
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
 
 
25
 
26
- generator = torch.Generator().manual_seed(seed)
27
 
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
 
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
-
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
57
-
58
- with gr.Blocks(css=css) as demo:
59
 
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
 
66
- with gr.Row():
67
 
68
- prompt = gr.Text(
69
- label="Prompt",
70
- show_label=False,
71
- max_lines=1,
72
- placeholder="Enter your prompt",
73
- container=False,
74
- )
75
 
76
- run_button = gr.Button("Run", scale=0)
77
 
78
- result = gr.Image(label="Result", show_label=False)
79
 
80
- with gr.Accordion("Advanced Settings", open=False):
81
 
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
87
- )
88
 
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
- )
96
 
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
 
99
- with gr.Row():
100
 
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
 
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
 
117
- with gr.Row():
118
 
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
 
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
 
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
-
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
144
- )
145
 
146
- demo.queue().launch()
 
1
  import gradio as gr
 
 
 
2
  import torch
3
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
4
+ from PIL import Image
5
+ import numpy as np
6
+ import cv2
7
+ from rembg import remove
8
+
9
+ # Загрузка моделей
10
+ controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
11
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
12
+ "runwayml/stable-diffusion-v1-5",
13
+ controlnet=controlnet,
14
+ torch_dtype=torch.float16
15
+ ).to("cuda")
16
+
17
+ def generate_background(image, prompt, negative_prompt):
18
+ # Удаление фона
19
+ image = Image.open(image).convert("RGBA")
20
+ output_image = remove(image)
21
+
22
+ # Преобразование изображения объекта в контурное изображение
23
+ foreground = output_image.convert("L")
24
+ _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
25
+ contour_image = Image.fromarray(contour)
26
+
27
+ # Генерация фона
28
+ generator = torch.Generator(device="cuda").manual_seed(1024)
29
+ result = pipe(
30
+ prompt=prompt,
31
+ negative_prompt=negative_prompt,
32
+ control_image=contour_image,
33
+ generator=generator,
34
+ num_inference_steps=50
35
+ )
36
+
37
+ background = result.images[0].convert("RGBA")
38
+
39
+ # Изменение размера фона до размера переднего плана
40
+ background = background.resize(output_image.size)
41
+
42
+ # Наложение изображений
43
+ composite = Image.alpha_composite(background, output_image)
44
+
45
+ return composite
46
+
47
+ # Определение интерфейса Gradio
48
+ iface = gr.Interface(
49
+ fn=generate_background,
50
+ inputs=[
51
+ gr.inputs.Image(type="file", label="Загрузите изображение"),
52
+ gr.inputs.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
53
+ gr.inputs.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
54
+ ],
55
+ outputs=gr.outputs.Image(type="pil", label="Результат")
56
+ )
57
+
58
+ # Запуск интерфейса
59
+ iface.launch()
60
 
61
+ # import gradio as gr
62
+ # import numpy as np
63
+ # import random
64
+ # from diffusers import DiffusionPipeline
65
+ # import torch
66
 
67
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
 
 
 
 
 
68
 
69
+ # if torch.cuda.is_available():
70
+ # torch.cuda.max_memory_allocated(device=device)
71
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
72
+ # pipe.enable_xformers_memory_efficient_attention()
73
+ # pipe = pipe.to(device)
74
+ # else:
75
+ # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
76
+ # pipe = pipe.to(device)
77
 
78
+ # MAX_SEED = np.iinfo(np.int32).max
79
+ # MAX_IMAGE_SIZE = 1024
80
 
81
+ # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
82
+
83
+ # if randomize_seed:
84
+ # seed = random.randint(0, MAX_SEED)
85
 
86
+ # generator = torch.Generator().manual_seed(seed)
87
 
88
+ # image = pipe(
89
+ # prompt = prompt,
90
+ # negative_prompt = negative_prompt,
91
+ # guidance_scale = guidance_scale,
92
+ # num_inference_steps = num_inference_steps,
93
+ # width = width,
94
+ # height = height,
95
+ # generator = generator
96
+ # ).images[0]
97
 
98
+ # return image
99
+
100
+ # examples = [
101
+ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
102
+ # "An astronaut riding a green horse",
103
+ # "A delicious ceviche cheesecake slice",
104
+ # ]
105
+
106
+ # css="""
107
+ # #col-container {
108
+ # margin: 0 auto;
109
+ # max-width: 520px;
110
+ # }
111
+ # """
112
+
113
+ # if torch.cuda.is_available():
114
+ # power_device = "GPU"
115
+ # else:
116
+ # power_device = "CPU"
117
+
118
+ # with gr.Blocks(css=css) as demo:
119
 
120
+ # with gr.Column(elem_id="col-container"):
121
+ # gr.Markdown(f"""
122
+ # # Text-to-Image Gradio Template
123
+ # Currently running on {power_device}.
124
+ # """)
125
 
126
+ # with gr.Row():
127
 
128
+ # prompt = gr.Text(
129
+ # label="Prompt",
130
+ # show_label=False,
131
+ # max_lines=1,
132
+ # placeholder="Enter your prompt",
133
+ # container=False,
134
+ # )
135
 
136
+ # run_button = gr.Button("Run", scale=0)
137
 
138
+ # result = gr.Image(label="Result", show_label=False)
139
 
140
+ # with gr.Accordion("Advanced Settings", open=False):
141
 
142
+ # negative_prompt = gr.Text(
143
+ # label="Negative prompt",
144
+ # max_lines=1,
145
+ # placeholder="Enter a negative prompt",
146
+ # visible=False,
147
+ # )
148
 
149
+ # seed = gr.Slider(
150
+ # label="Seed",
151
+ # minimum=0,
152
+ # maximum=MAX_SEED,
153
+ # step=1,
154
+ # value=0,
155
+ # )
156
 
157
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
158
 
159
+ # with gr.Row():
160
 
161
+ # width = gr.Slider(
162
+ # label="Width",
163
+ # minimum=256,
164
+ # maximum=MAX_IMAGE_SIZE,
165
+ # step=32,
166
+ # value=512,
167
+ # )
168
 
169
+ # height = gr.Slider(
170
+ # label="Height",
171
+ # minimum=256,
172
+ # maximum=MAX_IMAGE_SIZE,
173
+ # step=32,
174
+ # value=512,
175
+ # )
176
 
177
+ # with gr.Row():
178
 
179
+ # guidance_scale = gr.Slider(
180
+ # label="Guidance scale",
181
+ # minimum=0.0,
182
+ # maximum=10.0,
183
+ # step=0.1,
184
+ # value=0.0,
185
+ # )
186
 
187
+ # num_inference_steps = gr.Slider(
188
+ # label="Number of inference steps",
189
+ # minimum=1,
190
+ # maximum=12,
191
+ # step=1,
192
+ # value=2,
193
+ # )
194
 
195
+ # gr.Examples(
196
+ # examples = examples,
197
+ # inputs = [prompt]
198
+ # )
199
+
200
+ # run_button.click(
201
+ # fn = infer,
202
+ # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
203
+ # outputs = [result]
204
+ # )
205
 
206
+ # demo.queue().launch()