Sveta's picture
Update app.py
3c67792 verified
raw
history blame
6.5 kB
import gradio as gr
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from PIL import Image
import numpy as np
import cv2
from rembg import remove
# Загрузка моделей
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
# torch_dtype=torch.float16
).to("cuda")
def generate_background(image_path, prompt, negative_prompt):
# Удаление фона
image = Image.open(image_path).convert("RGBA")
output_image = remove(image)
# Преобразование изображения объекта в контурное изображение
foreground = output_image.convert("L")
_, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
contour_image = Image.fromarray(contour)
# Генерация фона
generator = torch.Generator(device="cuda").manual_seed(1024)
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=contour_image,
generator=generator,
num_inference_steps=50
)
background = result.images[0].convert("RGBA")
# Изменение размера фона до размера переднего плана
background = background.resize(output_image.size)
# Наложение изображений
composite = Image.alpha_composite(background, output_image)
return composite
# Определение интерфейса Gradio
iface = gr.Interface(
fn=generate_background,
inputs=[
gr.Image(type="filepath", label="Загрузите изображение"),
gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
],
outputs=gr.Image(type="pil", label="Результат")
)
# Запуск интерфейса
iface.launch()
# import gradio as gr
# import numpy as np
# import random
# from diffusers import DiffusionPipeline
# import torch
# device = "cuda" if torch.cuda.is_available() else "cpu"
# if torch.cuda.is_available():
# torch.cuda.max_memory_allocated(device=device)
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
# pipe.enable_xformers_memory_efficient_attention()
# pipe = pipe.to(device)
# else:
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
# pipe = pipe.to(device)
# MAX_SEED = np.iinfo(np.int32).max
# MAX_IMAGE_SIZE = 1024
# def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# if randomize_seed:
# seed = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed)
# image = pipe(
# prompt = prompt,
# negative_prompt = negative_prompt,
# guidance_scale = guidance_scale,
# num_inference_steps = num_inference_steps,
# width = width,
# height = height,
# generator = generator
# ).images[0]
# return image
# examples = [
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
# "An astronaut riding a green horse",
# "A delicious ceviche cheesecake slice",
# ]
# css="""
# #col-container {
# margin: 0 auto;
# max-width: 520px;
# }
# """
# if torch.cuda.is_available():
# power_device = "GPU"
# else:
# power_device = "CPU"
# with gr.Blocks(css=css) as demo:
# with gr.Column(elem_id="col-container"):
# gr.Markdown(f"""
# # Text-to-Image Gradio Template
# Currently running on {power_device}.
# """)
# with gr.Row():
# prompt = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# run_button = gr.Button("Run", scale=0)
# result = gr.Image(label="Result", show_label=False)
# with gr.Accordion("Advanced Settings", open=False):
# negative_prompt = gr.Text(
# label="Negative prompt",
# max_lines=1,
# placeholder="Enter a negative prompt",
# visible=False,
# )
# seed = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=0,
# )
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
# with gr.Row():
# width = gr.Slider(
# label="Width",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# height = gr.Slider(
# label="Height",
# minimum=256,
# maximum=MAX_IMAGE_SIZE,
# step=32,
# value=512,
# )
# with gr.Row():
# guidance_scale = gr.Slider(
# label="Guidance scale",
# minimum=0.0,
# maximum=10.0,
# step=0.1,
# value=0.0,
# )
# num_inference_steps = gr.Slider(
# label="Number of inference steps",
# minimum=1,
# maximum=12,
# step=1,
# value=2,
# )
# gr.Examples(
# examples = examples,
# inputs = [prompt]
# )
# run_button.click(
# fn = infer,
# inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
# outputs = [result]
# )
# demo.queue().launch()