Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from rembg import remove | |
# Загрузка моделей | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
# torch_dtype=torch.float16 | |
).to("cuda") | |
def generate_background(image_path, prompt, negative_prompt): | |
# Удаление фона | |
image = Image.open(image_path).convert("RGBA") | |
output_image = remove(image) | |
# Преобразование изображения объекта в контурное изображение | |
foreground = output_image.convert("L") | |
_, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY) | |
contour_image = Image.fromarray(contour) | |
# Генерация фона | |
generator = torch.Generator(device="cuda").manual_seed(1024) | |
result = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=contour_image, | |
generator=generator, | |
num_inference_steps=50 | |
) | |
background = result.images[0].convert("RGBA") | |
# Изменение размера фона до размера переднего плана | |
background = background.resize(output_image.size) | |
# Наложение изображений | |
composite = Image.alpha_composite(background, output_image) | |
return composite | |
# Определение интерфейса Gradio | |
iface = gr.Interface( | |
fn=generate_background, | |
inputs=[ | |
gr.Image(type="filepath", label="Загрузите изображение"), | |
gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"), | |
gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт") | |
], | |
outputs=gr.Image(type="pil", label="Результат") | |
) | |
# Запуск интерфейса | |
iface.launch() | |
# import gradio as gr | |
# import numpy as np | |
# import random | |
# from diffusers import DiffusionPipeline | |
# import torch | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# if torch.cuda.is_available(): | |
# torch.cuda.max_memory_allocated(device=device) | |
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
# pipe.enable_xformers_memory_efficient_attention() | |
# pipe = pipe.to(device) | |
# else: | |
# pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
# pipe = pipe.to(device) | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 1024 | |
# def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# generator = torch.Generator().manual_seed(seed) | |
# image = pipe( | |
# prompt = prompt, | |
# negative_prompt = negative_prompt, | |
# guidance_scale = guidance_scale, | |
# num_inference_steps = num_inference_steps, | |
# width = width, | |
# height = height, | |
# generator = generator | |
# ).images[0] | |
# return image | |
# examples = [ | |
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
# "An astronaut riding a green horse", | |
# "A delicious ceviche cheesecake slice", | |
# ] | |
# css=""" | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 520px; | |
# } | |
# """ | |
# if torch.cuda.is_available(): | |
# power_device = "GPU" | |
# else: | |
# power_device = "CPU" | |
# with gr.Blocks(css=css) as demo: | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(f""" | |
# # Text-to-Image Gradio Template | |
# Currently running on {power_device}. | |
# """) | |
# with gr.Row(): | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# run_button = gr.Button("Run", scale=0) | |
# result = gr.Image(label="Result", show_label=False) | |
# with gr.Accordion("Advanced Settings", open=False): | |
# negative_prompt = gr.Text( | |
# label="Negative prompt", | |
# max_lines=1, | |
# placeholder="Enter a negative prompt", | |
# visible=False, | |
# ) | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# with gr.Row(): | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=512, | |
# ) | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=512, | |
# ) | |
# with gr.Row(): | |
# guidance_scale = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.0, | |
# maximum=10.0, | |
# step=0.1, | |
# value=0.0, | |
# ) | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=12, | |
# step=1, | |
# value=2, | |
# ) | |
# gr.Examples( | |
# examples = examples, | |
# inputs = [prompt] | |
# ) | |
# run_button.click( | |
# fn = infer, | |
# inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
# outputs = [result] | |
# ) | |
# demo.queue().launch() |