Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
from lang_sam import LangSAM | |
from color_matcher import ColorMatcher | |
from color_matcher.normalizer import Normalizer | |
import torch | |
import warnings | |
# Suppress specific warnings if desired | |
warnings.filterwarnings("ignore", category=UserWarning) | |
# Device configuration: Use CUDA if available, else CPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"Using device: {device}") | |
# Load the LangSAM model | |
model = LangSAM() # Use the default model or specify custom checkpoint if necessary | |
# Note: Removed model.to(device) since LangSAM does not support it | |
def extract_masks(image_pil, prompts): | |
""" | |
Extracts masks for each prompt using the LangSAM model. | |
Args: | |
image_pil (PIL.Image): The input image. | |
prompts (str): Comma-separated prompts for segmentation. | |
Returns: | |
dict: A dictionary mapping each prompt to its corresponding binary mask. | |
""" | |
prompts_list = [p.strip() for p in prompts.split(',') if p.strip()] | |
masks_dict = {} | |
with torch.no_grad(): # Disable gradient computation for inference | |
for prompt in prompts_list: | |
# Ensure the model uses the correct device internally | |
masks, boxes, phrases, logits = model.predict(image_pil, prompt) | |
if masks is not None and len(masks) > 0: | |
# Move masks to CPU and convert to numpy | |
masks_np = masks[0].cpu().numpy() | |
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask | |
masks_dict[prompt] = mask | |
return masks_dict | |
def apply_color_matching(source_img_np, ref_img_np): | |
""" | |
Applies color matching from the reference image to the source image. | |
Args: | |
source_img_np (numpy.ndarray): Source image in NumPy array format. | |
ref_img_np (numpy.ndarray): Reference image in NumPy array format. | |
Returns: | |
numpy.ndarray: Color-matched image. | |
""" | |
# Initialize ColorMatcher | |
cm = ColorMatcher() | |
# Apply color matching | |
img_res = cm.transfer(src=source_img_np, ref=ref_img_np, method='mkl') | |
# Normalize the result | |
img_res = Normalizer(img_res).uint8_norm() | |
return img_res | |
def process_image(current_image_pil, selected_prompt, masks_dict, replacement_image_pil, color_ref_image_pil, apply_replacement, apply_color_grading, apply_color_to_full_image, blending_amount, image_history): | |
""" | |
Processes the image by applying replacement and/or color grading based on user input. | |
Args: | |
current_image_pil (PIL.Image): The current image to be edited. | |
selected_prompt (str): The selected segment prompt. | |
masks_dict (dict): Dictionary of masks for each prompt. | |
replacement_image_pil (PIL.Image): Replacement image (optional). | |
color_ref_image_pil (PIL.Image): Color reference image (optional). | |
apply_replacement (bool): Flag to apply replacement. | |
apply_color_grading (bool): Flag to apply color grading. | |
apply_color_to_full_image (bool): Flag to apply color grading to the full image. | |
blending_amount (int): Amount for blending the mask. | |
image_history (list): History of images for undo functionality. | |
Returns: | |
tuple: Updated image, status message, updated history, and image display. | |
""" | |
# Check if current_image_pil is None | |
if current_image_pil is None: | |
return None, "No current image to edit.", image_history, None | |
if not apply_replacement and not apply_color_grading: | |
return current_image_pil, "No changes applied. Please select at least one operation.", image_history, current_image_pil | |
if apply_replacement and replacement_image_pil is None: | |
return current_image_pil, "Replacement image not provided.", image_history, current_image_pil | |
if apply_color_grading and color_ref_image_pil is None: | |
return current_image_pil, "Color reference image not provided.", image_history, current_image_pil | |
# Get the mask from masks_dict | |
if selected_prompt not in masks_dict: | |
return current_image_pil, f"No mask available for selected segment: {selected_prompt}", image_history, current_image_pil | |
mask = masks_dict[selected_prompt] | |
# Save current image to history for undo | |
if image_history is None: | |
image_history = [] | |
image_history.append(current_image_pil.copy()) | |
# Proceed with replacement or color matching | |
current_image_np = np.array(current_image_pil) | |
result_image_np = current_image_np.copy() | |
# Create mask with blending | |
# First, normalize mask to range [0,1] | |
mask_normalized = mask.astype(np.float32) / 255.0 | |
# Apply blending by blurring the mask | |
if blending_amount > 0: | |
# The kernel size for blurring; larger blending_amount means more blur | |
kernel_size = int(blending_amount) | |
if kernel_size % 2 == 0: | |
kernel_size += 1 # Kernel size must be odd | |
mask_blurred = cv2.GaussianBlur(mask_normalized, (kernel_size, kernel_size), 0) | |
else: | |
mask_blurred = mask_normalized | |
# Convert mask to 3 channels | |
mask_blurred_3ch = cv2.merge([mask_blurred, mask_blurred, mask_blurred]) | |
# If apply replacement | |
if apply_replacement: | |
# Resize replacement image to match current image | |
replacement_image_resized = replacement_image_pil.resize(current_image_pil.size) | |
replacement_image_np = np.array(replacement_image_resized) | |
# Blend the replacement image with the current image using the mask | |
result_image_np = (replacement_image_np.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8) | |
# If apply color grading | |
if apply_color_grading: | |
# Convert color reference image to numpy | |
color_ref_image_np = np.array(color_ref_image_pil) | |
if apply_color_to_full_image: | |
# Apply color matching to the full image | |
color_matched_image = apply_color_matching(result_image_np, color_ref_image_np) | |
result_image_np = color_matched_image | |
else: | |
# Apply color matching only to the masked area | |
# Extract the masked area | |
masked_region = (result_image_np.astype(np.float32) * mask_blurred_3ch).astype(np.uint8) | |
# Apply color matching | |
color_matched_region = apply_color_matching(masked_region, color_ref_image_np) | |
# Blend the color matched region back into the result image | |
result_image_np = (color_matched_region.astype(np.float32) * mask_blurred_3ch + result_image_np.astype(np.float32) * (1 - mask_blurred_3ch)).astype(np.uint8) | |
# Convert result back to PIL Image | |
result_image_pil = Image.fromarray(result_image_np) | |
# Update current_image_pil | |
current_image_pil = result_image_pil | |
return current_image_pil, f"Applied changes to '{selected_prompt}'", image_history, current_image_pil | |
def undo(image_history): | |
""" | |
Undoes the last image edit by reverting to the previous image in the history. | |
Args: | |
image_history (list): History of images. | |
Returns: | |
tuple: Reverted image, updated history, and image display. | |
""" | |
if image_history and len(image_history) > 1: | |
# Pop the last image | |
image_history.pop() | |
# Return the previous image | |
current_image_pil = image_history[-1] | |
return current_image_pil, image_history, current_image_pil | |
elif image_history and len(image_history) == 1: | |
current_image_pil = image_history[0] | |
return current_image_pil, image_history, current_image_pil | |
else: | |
# Cannot undo | |
return None, [], None | |
def gradio_interface(): | |
""" | |
Defines and launches the Gradio interface for continuous image editing. | |
""" | |
with gr.Blocks() as demo: | |
# Define the state variables | |
image_history = gr.State([]) | |
current_image_pil = gr.State(None) | |
masks_dict = gr.State({}) # Store masks for each prompt | |
gr.Markdown("## Continuous Image Editing with LangSAM") | |
with gr.Row(): | |
with gr.Column(): | |
initial_image = gr.Image(type="pil", label="Upload Image") | |
prompts = gr.Textbox(lines=1, placeholder="Enter prompts separated by commas (e.g., sky, grass)", label="Prompts") | |
segment_button = gr.Button("Segment Image") | |
segment_dropdown = gr.Dropdown(label="Select Segment", choices=[], allow_custom_value=True) | |
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)") | |
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)") | |
apply_replacement = gr.Checkbox(label="Apply Replacement", value=False) | |
apply_color_grading = gr.Checkbox(label="Apply Color Grading", value=False) | |
apply_color_to_full_image = gr.Checkbox(label="Apply Color Correction to Full Image", value=False) | |
blending_amount = gr.Slider(minimum=0, maximum=500, step=1, label="Blending Amount", value=150) | |
apply_button = gr.Button("Apply Changes") | |
undo_button = gr.Button("Undo") | |
with gr.Column(): | |
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False) | |
status = gr.Textbox(lines=2, interactive=False, label="Status") | |
def initialize_image(initial_image_pil): | |
""" | |
Initializes the image history and sets up the initial image. | |
Args: | |
initial_image_pil (PIL.Image): The uploaded initial image. | |
Returns: | |
tuple: Updated states and status message. | |
""" | |
if initial_image_pil is not None: | |
image_history = [initial_image_pil] | |
current_image_pil = initial_image_pil | |
return current_image_pil, image_history, initial_image_pil, {}, gr.update(choices=[], value=None), "Image loaded." | |
else: | |
return None, [], None, {}, gr.update(choices=[], value=None), "No image loaded." | |
# When the initial image is uploaded, initialize the image history | |
initial_image.upload( | |
fn=initialize_image, | |
inputs=initial_image, | |
outputs=[current_image_pil, image_history, current_image_display, masks_dict, segment_dropdown, status] | |
) | |
# Segment button click | |
def segment_image_wrapper(current_image_pil, prompts): | |
""" | |
Handles the segmentation of the image based on user prompts. | |
Args: | |
current_image_pil (PIL.Image): The current image. | |
prompts (str): Comma-separated prompts. | |
Returns: | |
tuple: Status message, updated masks, and dropdown updates. | |
""" | |
if current_image_pil is None: | |
return "No image uploaded.", {}, gr.update(choices=[], value=None) | |
masks = extract_masks(current_image_pil, prompts) | |
if not masks: | |
return "No masks detected for the given prompts.", {}, gr.update(choices=[], value=None) | |
dropdown_choices = list(masks.keys()) | |
return "Segmentation completed.", masks, gr.update(choices=dropdown_choices, value=dropdown_choices[0]) | |
segment_button.click( | |
fn=segment_image_wrapper, | |
inputs=[current_image_pil, prompts], | |
outputs=[status, masks_dict, segment_dropdown] | |
) | |
# Apply button click | |
apply_button.click( | |
fn=process_image, | |
inputs=[ | |
current_image_pil, | |
segment_dropdown, | |
masks_dict, | |
replacement_image, | |
color_ref_image, | |
apply_replacement, | |
apply_color_grading, | |
apply_color_to_full_image, | |
blending_amount, | |
image_history | |
], | |
outputs=[current_image_pil, status, image_history, current_image_display] | |
) | |
# Undo button click | |
undo_button.click( | |
fn=undo, | |
inputs=image_history, | |
outputs=[current_image_pil, image_history, current_image_display] | |
) | |
demo.launch(share=True) | |
# Run the Gradio Interface | |
if __name__ == "__main__": | |
gradio_interface() | |