Spaces:
Running
on
Zero
Running
on
Zero
Bug Fix in Sketch affecting other areas
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🌖
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
python_version: 3.12.
|
8 |
sdk_version: 5.22.0
|
9 |
app_file: app.py
|
10 |
pinned: false
|
@@ -24,7 +24,7 @@ thumbnail: >-
|
|
24 |
|
25 |
# Hex Game Maker
|
26 |
## Description
|
27 |
-
Welcome to Hex Game Maker, the ultimate tool for transforming your images into mesmerizing hexagon grid masterpieces! Well, this
|
28 |
The intention was to do a full conversion, but the limitation on Negative Prompts is what killed this approach. It does not consistently render table top maps.. but it can do a lot!
|
29 |
|
30 |
### What Can You Do?
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
python_version: 3.12.3
|
8 |
sdk_version: 5.22.0
|
9 |
app_file: app.py
|
10 |
pinned: false
|
|
|
24 |
|
25 |
# Hex Game Maker
|
26 |
## Description
|
27 |
+
Welcome to Hex Game Maker, the ultimate tool for transforming your images into mesmerizing hexagon grid masterpieces! **Well, this is a test project for HexaGrid.** It has some nice features that did not make it into the final version of the program.
|
28 |
The intention was to do a full conversion, but the limitation on Negative Prompts is what killed this approach. It does not consistently render table top maps.. but it can do a lot!
|
29 |
|
30 |
### What Can You Do?
|
app.py
CHANGED
@@ -54,6 +54,7 @@ from modules.constants import (
|
|
54 |
default_lut_example_img,
|
55 |
lut_files,
|
56 |
MAX_SEED,
|
|
|
57 |
# lut_folder,cards,
|
58 |
# cards_alternating,
|
59 |
# card_colors,
|
@@ -348,9 +349,14 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
348 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
349 |
if flash_attention_enabled:
|
350 |
pipe.attn_implementation="flash_attention_2"
|
351 |
-
|
352 |
-
|
353 |
-
|
|
|
|
|
|
|
|
|
|
|
354 |
|
355 |
# Disable unnecessary features
|
356 |
pipe.safety_checker = None
|
@@ -384,12 +390,18 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
384 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
385 |
if flash_attention_enabled:
|
386 |
pipe_i2i.attn_implementation="flash_attention_2"
|
387 |
-
|
388 |
-
|
389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
|
391 |
# Disable unnecessary features
|
392 |
-
|
393 |
image_input = open_image(image_input_path)
|
394 |
print(f"\nGenerating image with prompt: {prompt_mash} and {image_input_path}\n")
|
395 |
approx_tokens= approximate_token_count(prompt_mash)
|
@@ -399,22 +411,24 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
399 |
else:
|
400 |
prompt = prompt_mash
|
401 |
prompt2 = None
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
415 |
return final_image
|
416 |
|
417 |
-
@spaces.GPU(duration=140)
|
418 |
def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, enlarge, use_conditioned_image=False, progress=gr.Progress(track_tqdm=True)):
|
419 |
if selected_index is None:
|
420 |
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
@@ -422,6 +436,8 @@ def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps,
|
|
422 |
# handle selecting a conditioned image from the gallery
|
423 |
global current_prerendered_image
|
424 |
conditioned_image=None
|
|
|
|
|
425 |
if use_conditioned_image:
|
426 |
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n")
|
427 |
# ensure the conditioned image is an image and not a string, cannot use RGBA
|
@@ -468,15 +484,18 @@ def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps,
|
|
468 |
|
469 |
if(image_input is not None):
|
470 |
print(f"\nGenerating image to image with seed: {seed}\n")
|
471 |
-
|
|
|
472 |
if enlarge:
|
473 |
-
upscaled_image = upscale_image(
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
|
|
|
|
480 |
yield final_image, seed, gr.update(visible=False)
|
481 |
else:
|
482 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
@@ -485,18 +504,20 @@ def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps,
|
|
485 |
step_counter = 0
|
486 |
for image in image_generator:
|
487 |
step_counter+=1
|
488 |
-
|
489 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
490 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
491 |
|
492 |
if enlarge:
|
493 |
-
upscaled_image = upscale_image(
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
|
500 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
501 |
|
502 |
def get_huggingface_safetensors(link):
|
@@ -631,9 +652,11 @@ def update_sketch_dimensions(input_image, sketch_image):
|
|
631 |
sk_img_path, _ = get_image_from_dict(sketch_image)
|
632 |
sk_img = open_image(sk_img_path)
|
633 |
# Resize sketch image if dimensions don't match input image.
|
634 |
-
if in_img.size != sk_img.size:
|
635 |
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
|
636 |
-
|
|
|
|
|
637 |
|
638 |
@spaces.GPU()
|
639 |
def getVersions():
|
@@ -722,7 +745,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
722 |
lut_intensity = gr.Slider(label="Filter Intensity", minimum=-200, maximum=200, value=100, info="0 none, negative inverts the filter", interactive=True)
|
723 |
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
|
724 |
with gr.Row():
|
725 |
-
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=default_lut_example_img)
|
726 |
with gr.Row():
|
727 |
with gr.Column():
|
728 |
gr.Markdown("""
|
@@ -933,7 +956,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
933 |
).then(
|
934 |
fn=update_sketch_dimensions,
|
935 |
inputs=[input_image, sketch_image],
|
936 |
-
outputs=[sketch_image]
|
937 |
)
|
938 |
prerendered_image_gallery.select(
|
939 |
fn=on_prerendered_gallery_selection,
|
@@ -960,7 +983,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
960 |
).then(
|
961 |
fn=update_sketch_dimensions,
|
962 |
inputs=[input_image, sketch_image],
|
963 |
-
outputs=[sketch_image]
|
964 |
)
|
965 |
lora_gallery.select(
|
966 |
update_selection,
|
@@ -984,7 +1007,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
984 |
).then(
|
985 |
fn=update_sketch_dimensions,
|
986 |
inputs=[input_image, sketch_image],
|
987 |
-
outputs=[sketch_image]
|
988 |
)
|
989 |
|
990 |
load_env_vars(dotenv_path)
|
|
|
54 |
default_lut_example_img,
|
55 |
lut_files,
|
56 |
MAX_SEED,
|
57 |
+
IS_SHARED_SPACE,
|
58 |
# lut_folder,cards,
|
59 |
# cards_alternating,
|
60 |
# card_colors,
|
|
|
349 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
350 |
if flash_attention_enabled:
|
351 |
pipe.attn_implementation="flash_attention_2"
|
352 |
+
|
353 |
+
if IS_SHARED_SPACE:
|
354 |
+
pipe.vae.enable_tiling() # For larger resolutions if needed
|
355 |
+
else:
|
356 |
+
# Compile UNet
|
357 |
+
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead")
|
358 |
+
#pipe.enable_model_cpu_offload() #for smaller GPUs
|
359 |
+
pipe.vae.enable_slicing()
|
360 |
|
361 |
# Disable unnecessary features
|
362 |
pipe.safety_checker = None
|
|
|
390 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
391 |
if flash_attention_enabled:
|
392 |
pipe_i2i.attn_implementation="flash_attention_2"
|
393 |
+
|
394 |
+
if IS_SHARED_SPACE:
|
395 |
+
pipe_i2i.vae.enable_tiling() # For larger resolutions if needed
|
396 |
+
else:
|
397 |
+
# Compile UNet
|
398 |
+
# pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead") # uses the other pipe's transformer
|
399 |
+
# pipe_i2i.enable_model_cpu_offload() #for smaller GPUs
|
400 |
+
pipe_i2i.vae.enable_slicing()
|
401 |
+
|
402 |
|
403 |
# Disable unnecessary features
|
404 |
+
pipe_i2i.safety_checker = None
|
405 |
image_input = open_image(image_input_path)
|
406 |
print(f"\nGenerating image with prompt: {prompt_mash} and {image_input_path}\n")
|
407 |
approx_tokens= approximate_token_count(prompt_mash)
|
|
|
411 |
else:
|
412 |
prompt = prompt_mash
|
413 |
prompt2 = None
|
414 |
+
with calculateDuration("Generating image"):
|
415 |
+
# Generate image
|
416 |
+
final_image = pipe_i2i(
|
417 |
+
prompt=prompt,
|
418 |
+
prompt_2=prompt2,
|
419 |
+
image=image_input,
|
420 |
+
strength=image_strength,
|
421 |
+
num_inference_steps=steps,
|
422 |
+
guidance_scale=cfg_scale,
|
423 |
+
width=width,
|
424 |
+
height=height,
|
425 |
+
generator=generator,
|
426 |
+
joint_attention_kwargs={"scale": lora_scale},
|
427 |
+
output_type="pil",
|
428 |
+
).images[0]
|
429 |
return final_image
|
430 |
|
431 |
+
@spaces.GPU(duration=140,progress=gr.Progress(track_tqdm=True))
|
432 |
def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, enlarge, use_conditioned_image=False, progress=gr.Progress(track_tqdm=True)):
|
433 |
if selected_index is None:
|
434 |
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
|
|
436 |
# handle selecting a conditioned image from the gallery
|
437 |
global current_prerendered_image
|
438 |
conditioned_image=None
|
439 |
+
formatted_map_option = map_option.lower().replace(' ', '_')
|
440 |
+
|
441 |
if use_conditioned_image:
|
442 |
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n")
|
443 |
# ensure the conditioned image is an image and not a string, cannot use RGBA
|
|
|
484 |
|
485 |
if(image_input is not None):
|
486 |
print(f"\nGenerating image to image with seed: {seed}\n")
|
487 |
+
generated_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed, progress)
|
488 |
+
|
489 |
if enlarge:
|
490 |
+
upscaled_image = upscale_image(generated_image, max(1.0,min((TARGET_SIZE[0]/width),(TARGET_SIZE[1]/height))))
|
491 |
+
else:
|
492 |
+
upscaled_image = generated_image
|
493 |
+
# Save the upscaled image to a temporary file
|
494 |
+
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled:
|
495 |
+
upscaled_image.save(tmp_upscaled.name, format="PNG")
|
496 |
+
temp_files.append(tmp_upscaled.name)
|
497 |
+
print(f"Upscaled image saved to {tmp_upscaled.name}")
|
498 |
+
final_image = tmp_upscaled.name
|
499 |
yield final_image, seed, gr.update(visible=False)
|
500 |
else:
|
501 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
|
|
504 |
step_counter = 0
|
505 |
for image in image_generator:
|
506 |
step_counter+=1
|
507 |
+
generated_image = image
|
508 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
509 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
510 |
|
511 |
if enlarge:
|
512 |
+
upscaled_image = upscale_image(generated_image, max(1.0,min((TARGET_SIZE[0]/width),(TARGET_SIZE[1]/height))))
|
513 |
+
else:
|
514 |
+
upscaled_image = generated_image
|
515 |
+
# Save the upscaled image to a temporary file
|
516 |
+
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled:
|
517 |
+
upscaled_image.save(tmp_upscaled.name, format="PNG")
|
518 |
+
temp_files.append(tmp_upscaled.name)
|
519 |
+
print(f"Upscaled image saved to {tmp_upscaled.name}")
|
520 |
+
final_image = tmp_upscaled.name
|
521 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
522 |
|
523 |
def get_huggingface_safetensors(link):
|
|
|
652 |
sk_img_path, _ = get_image_from_dict(sketch_image)
|
653 |
sk_img = open_image(sk_img_path)
|
654 |
# Resize sketch image if dimensions don't match input image.
|
655 |
+
if (in_img) and (in_img.size != sk_img.size):
|
656 |
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
|
657 |
+
return [sk_img, gr.update(width=in_img.width, height=in_img.height)]
|
658 |
+
else:
|
659 |
+
return [sk_img, gr.update()]
|
660 |
|
661 |
@spaces.GPU()
|
662 |
def getVersions():
|
|
|
745 |
lut_intensity = gr.Slider(label="Filter Intensity", minimum=-200, maximum=200, value=100, info="0 none, negative inverts the filter", interactive=True)
|
746 |
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
|
747 |
with gr.Row():
|
748 |
+
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=default_lut_example_img, format="png")
|
749 |
with gr.Row():
|
750 |
with gr.Column():
|
751 |
gr.Markdown("""
|
|
|
956 |
).then(
|
957 |
fn=update_sketch_dimensions,
|
958 |
inputs=[input_image, sketch_image],
|
959 |
+
outputs=[sketch_image, sketch_image]
|
960 |
)
|
961 |
prerendered_image_gallery.select(
|
962 |
fn=on_prerendered_gallery_selection,
|
|
|
983 |
).then(
|
984 |
fn=update_sketch_dimensions,
|
985 |
inputs=[input_image, sketch_image],
|
986 |
+
outputs=[sketch_image, sketch_image]
|
987 |
)
|
988 |
lora_gallery.select(
|
989 |
update_selection,
|
|
|
1007 |
).then(
|
1008 |
fn=update_sketch_dimensions,
|
1009 |
inputs=[input_image, sketch_image],
|
1010 |
+
outputs=[sketch_image, sketch_image]
|
1011 |
)
|
1012 |
|
1013 |
load_env_vars(dotenv_path)
|