File size: 35,789 Bytes
f674364
 
 
 
 
 
 
 
 
 
 
 
 
86ffa71
f674364
 
 
 
 
 
 
 
 
 
 
 
 
 
86ffa71
 
 
 
 
 
 
 
aaedf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ffa71
f674364
 
aaedf4f
 
86ffa71
 
 
 
 
 
 
 
 
f674364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ffa71
f674364
 
 
aaedf4f
 
f674364
 
 
aaedf4f
 
f674364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaedf4f
 
f674364
aaedf4f
 
f674364
 
 
 
 
 
 
 
 
 
 
 
86ffa71
f674364
 
86ffa71
f674364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaedf4f
f674364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ffa71
aaedf4f
 
f674364
86ffa71
f674364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaedf4f
 
 
 
 
 
 
f674364
 
 
86ffa71
aaedf4f
f674364
aaedf4f
 
 
f674364
aaedf4f
 
f674364
aaedf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f674364
aaedf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f674364
aaedf4f
 
 
 
 
 
 
 
 
 
f674364
aaedf4f
 
 
 
f674364
aaedf4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ffa71
 
f674364
aaedf4f
 
 
 
 
 
 
 
 
 
 
 
 
f674364
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaedf4f
f674364
 
 
86ffa71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
import os
import json
import copy
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union

import torch
from PIL import Image
import gradio as gr


from diffusers import (
    DiffusionPipeline,
    AutoencoderTiny,
    AutoencoderKL,
    AutoPipelineForImage2Image,
    FluxPipeline,
    FlowMatchEulerDiscreteScheduler)

from huggingface_hub import (
    hf_hub_download,
    HfFileSystem,
    ModelCard,
    snapshot_download)

from diffusers.utils import load_image

from modules.version_info import (
    versions_html,
    #initialize_cuda,
    #release_torch_resources,
    #get_torch_info
)
from modules.image_utils import (
    change_color,
    open_image,
    build_prerendered_images,
    upscale_image,
    lerp_imagemath,
    shrink_and_paste_on_blank,
    show_lut,
    apply_lut_to_image_path,
    multiply_and_blend_images,
    alpha_composite_with_control,
    crop_and_resize_image,
    convert_to_rgba_png
)
from modules.constants import (
    LORA_DETAILS, LORAS as loras, MODELS,
    default_lut_example_img, 
    lut_files, 
    MAX_SEED, 
    lut_folder,cards, 
    cards_alternating, 
    card_colors, 
    card_colors_alternating,
    pre_rendered_maps_paths
)
from modules.excluded_colors import (
    add_color,
    delete_color,
    build_dataframe,
    on_input,
    excluded_color_list,
    on_color_display_select
)
from modules.misc import (
    get_filename,
    convert_ratio_to_dimensions,
    update_dimensions_on_ratio
)
from modules.lora_details import (
    approximate_token_count,
    split_prompt_precisely,
)

import spaces

input_image_palette = []
current_prerendered_image = gr.State("./images/images/Beeuty-1.png")
#---if workspace = local or colab---

# Authenticate with Hugging Face
# from huggingface_hub import login

# Log in to Hugging Face using the provided token
# hf_token = 'hf-token-authentication'
# login(hf_token)

def calculate_shift(
    image_seq_len,
    base_seq_len: int = 256,
    max_seq_len: int = 4096,
    base_shift: float = 0.5,
    max_shift: float = 1.16,
):
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
    b = base_shift - m * base_seq_len
    mu = image_seq_len * m + b
    return mu

def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps

# FLUX pipeline
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
    self,
    prompt: Union[str, List[str]] = None,
    prompt_2: Optional[Union[str, List[str]]] = None,
    height: Optional[int] = None,
    width: Optional[int] = None,
    num_inference_steps: int = 28,
    timesteps: List[int] = None,
    guidance_scale: float = 3.5,
    num_images_per_prompt: Optional[int] = 1,
    generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
    latents: Optional[torch.FloatTensor] = None,
    prompt_embeds: Optional[torch.FloatTensor] = None,
    pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
    output_type: Optional[str] = "pil",
    return_dict: bool = True,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    max_sequence_length: int = 512,
    good_vae: Optional[Any] = None,
):
    height = height or self.default_sample_size * self.vae_scale_factor
    width = width or self.default_sample_size * self.vae_scale_factor
    
    self.check_inputs(
        prompt,
        prompt_2,
        height,
        width,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        max_sequence_length=max_sequence_length,
    )

    self._guidance_scale = guidance_scale
    self._joint_attention_kwargs = joint_attention_kwargs
    self._interrupt = False

    batch_size = 1 if isinstance(prompt, str) else len(prompt)
    device = self._execution_device

    lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
    prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
        prompt=prompt,
        prompt_2=prompt_2,
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        device=device,
        num_images_per_prompt=num_images_per_prompt,
        max_sequence_length=max_sequence_length,
        lora_scale=lora_scale,
    )
    
    num_channels_latents = self.transformer.config.in_channels // 4
    latents, latent_image_ids = self.prepare_latents(
        batch_size * num_images_per_prompt,
        num_channels_latents,
        height,
        width,
        prompt_embeds.dtype,
        device,
        generator,
        latents,
    )
    
    sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
    image_seq_len = latents.shape[1]
    mu = calculate_shift(
        image_seq_len,
        self.scheduler.config.base_image_seq_len,
        self.scheduler.config.max_image_seq_len,
        self.scheduler.config.base_shift,
        self.scheduler.config.max_shift,
    )
    timesteps, num_inference_steps = retrieve_timesteps(
        self.scheduler,
        num_inference_steps,
        device,
        timesteps,
        sigmas,
        mu=mu,
    )
    self._num_timesteps = len(timesteps)

    guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

    for i, t in enumerate(timesteps):
        if self.interrupt:
            continue

        timestep = t.expand(latents.shape[0]).to(latents.dtype)

        noise_pred = self.transformer(
            hidden_states=latents,
            timestep=timestep / 1000,
            guidance=guidance,
            pooled_projections=pooled_prompt_embeds,
            encoder_hidden_states=prompt_embeds,
            txt_ids=text_ids,
            img_ids=latent_image_ids,
            joint_attention_kwargs=self.joint_attention_kwargs,
            return_dict=False,
        )[0]

        latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
        image = self.vae.decode(latents_for_image, return_dict=False)[0]
        yield self.image_processor.postprocess(image, output_type=output_type)[0]
        latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
        torch.cuda.empty_cache()
        
    latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
    latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
    image = good_vae.decode(latents, return_dict=False)[0]
    self.maybe_free_model_hooks()
    torch.cuda.empty_cache()
    yield self.image_processor.postprocess(image, output_type=output_type)[0]

#--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------#

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"

#TAEF1 is very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. FLUX.1 is useful for real-time previewing of the FLUX.1 generation process.#
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
                                                      vae=good_vae,
                                                      transformer=pipe.transformer,
                                                      text_encoder=pipe.text_encoder,
                                                      tokenizer=pipe.tokenizer,
                                                      text_encoder_2=pipe.text_encoder_2,
                                                      tokenizer_2=pipe.tokenizer_2,
                                                      torch_dtype=dtype
                                                     )

MAX_SEED = 2**32-1

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")

def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
        else:
            width = 1024
            height = 1024
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=120)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    if approximate_token_count(prompt_mash) > 76:
        prompt, prompt2 = split_prompt_precisely(prompt_mash)
    with calculateDuration("Generating image"):
        # Generate image
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            prompt2=prompt2,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
            output_type="pil",
            good_vae=good_vae,
        ):
            yield img

def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
    generator = torch.Generator(device="cuda").manual_seed(seed)
    pipe_i2i.to("cuda")
    image_input = load_image(image_input_path)
    if approximate_token_count(prompt_mash) > 76:
        prompt, prompt2 = split_prompt_precisely(prompt_mash)
    final_image = pipe_i2i(
        prompt=prompt,
        prompt2=prompt2,
        image=image_input,
        strength=image_strength,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
        output_type="pil",
    ).images[0]
    return final_image 

@spaces.GPU(duration=120)
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if selected_index is None:
        raise gr.Error("You must select a LoRA before proceeding.🧨")
    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    if(trigger_word):
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    with calculateDuration("Unloading LoRA"):
        pipe.unload_lora_weights()
        pipe_i2i.unload_lora_weights()
        
    #LoRA weights flow
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        pipe_to_use = pipe_i2i if image_input is not None else pipe
        weight_name = selected_lora.get("weights", None)
        
        pipe_to_use.load_lora_weights(
            lora_path, 
            weight_name=weight_name, 
            low_cpu_mem_usage=True
        )
            
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
            
    if(image_input is not None):
        print(f"\nGenerating image to image with seed: {seed}\n")
        final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
        yield final_image, seed, gr.update(visible=False)
    else:
        image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
    
        final_image = None
        step_counter = 0
        for image in image_generator:
            step_counter+=1
            final_image = image
            progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
            yield image, seed, gr.update(value=progress_bar, visible=True)
            
        yield final_image, seed, gr.update(value=progress_bar, visible=False)
        
def get_huggingface_safetensors(link):
  split_link = link.split("/")
  if(len(split_link) == 2):
            model_card = ModelCard.load(link)
            base_model = model_card.data.get("base_model")
            print(base_model)
      
            #Allows Both
            if base_model not in MODELS:
            #if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
                raise Exception("Flux LoRA Not Found!")
                
            # Only allow "black-forest-labs/FLUX.1-dev"
            #if base_model != "black-forest-labs/FLUX.1-dev":
                #raise Exception("Only FLUX.1-dev is supported, other LoRA models are not allowed!")
                
            image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
            trigger_word = model_card.data.get("instance_prompt", "")
            image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
            fs = HfFileSystem()
            try:
                list_of_files = fs.ls(link, detail=False)
                for file in list_of_files:
                    if(file.endswith(".safetensors")):
                        safetensors_name = file.split("/")[-1]
                    if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
                      image_elements = file.split("/")
                      image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
            except Exception as e:
              print(e)
              gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
              raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
            return split_link[1], link, safetensors_name, trigger_word, image_url

def check_custom_model(link):
    if(link.startswith("https://")):
        if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
    else: 
        return get_huggingface_safetensors(link)

def add_custom_lora(custom_lora):
    global loras
    if(custom_lora):
        try:
            title, repo, path, trigger_word, image = check_custom_model(custom_lora)
            print(f"Loaded custom LoRA: {repo}")
            card = f'''
            <div class="custom_lora_card">
              <span>Loaded custom LoRA:</span>
              <div class="card_internal">
                <img src="{image}" />
                <div>
                    <h3>{title}</h3>
                    <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
                </div>
              </div>
            </div>
            '''
            existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
            if(not existing_item_index):
                new_item = {
                    "image": image,
                    "title": title,
                    "repo": repo,
                    "weights": path,
                    "trigger_word": trigger_word
                }
                print(new_item)
                existing_item_index = len(loras)
                loras.append(new_item)
        
            return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
        except Exception as e:
            gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
            return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=False), gr.update(), "", None, ""
    else:
        return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""

def remove_custom_lora():
    return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def on_prerendered_gallery_selection(event_data: gr.SelectData):
    global current_prerendered_image
    selected_index = event_data.index
    selected_image = pre_rendered_maps_paths[selected_index]
    print(f"Gallery Image Selected: {selected_image}\n")
    current_prerendered_image.value = selected_image
    return current_prerendered_image

run_lora.zerogpu = True

title = "Hex Game Maker"
with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty', delete_cache=(7200, 7200)) as app:
    with gr.Row():
        gr.Markdown("""
        # Hex Game Maker
        ## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro")
    with gr.Row():
        with gr.Accordion("Welcome to Hex Game Maker, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"):
            gr.Markdown ("""

            ## Drop an image into the Input Image and get started!

        

            ## What is Hex Game Maker?
            Hex Game Maker is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles!

            ### What Can You Do?
            - **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters.
            - **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them.
            - **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look.
            - **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time.
            - **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization.
            - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
            - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
            - **Add Margins:** Add customizable margins around your images for a polished finish.

            ### Why You'll Love It
            - **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun!
            - **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways.
            - **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢
            - **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization.

            ### Get Started
            1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool.
            2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay.
            3. **Download and Share:** Once you're happy with your creation, download it and share it with the world!

            ### Advanced Features
            - **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images.
            - **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
            - **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
            - **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization.
            - **Add Margins:** Customize margins around your images for a polished finish.

            Join the hive and start creating with HexaGrid Creator today!
        
            """, elem_classes="intro")
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=2):
            progress_bar = gr.Markdown(elem_id="progress",visible=False)
            input_image = gr.Image(
                label="Input Image",
                type="filepath",
                interactive=True,
                elem_classes="centered solid imgcontainer",
                key="imgInput",
                image_mode=None,
                format="PNG", 
                show_download_button=True,
            )
            def on_input_image_change(image_path):
                if image_path is None:
                    gr.Warning("Please upload an Input Image to get started.")
                    return None
                img, img_path = convert_to_rgba_png(image_path)
                return img_path

            input_image.input(
                fn=on_input_image_change,
                inputs=[input_image],
                outputs=[input_image], scroll_to_output=True,
            )
        with gr.Column(scale=0):
            with gr.Accordion("Hex Coloring and Exclusion", open = False):
                with gr.Row():
                    with gr.Column():
                        color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050")
                    with gr.Column():
                        filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,)
                exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid")
                color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered")
                selected_row = gr.Number(0, label="Selected Row", visible=False)
                delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid")
                fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True)
            with gr.Accordion("Image Filters", open = False):
                with gr.Row():
                    with gr.Column():
                        composite_color = gr.ColorPicker(label="Color", value="#ede9ac44")
                    with gr.Column():
                        composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True)
                with gr.Row():
                    composite_button = gr.Button("Composite", elem_classes="solid")
                with gr.Row():
                    with gr.Column():
                        lut_filename = gr.Textbox(
                            value="", 
                            label="Look Up Table (LUT) File Name",
                            elem_id="lutFileName")
                    with gr.Column():
                        lut_file = gr.File(
                            value=None,
                            file_count="single",
                            file_types=[".cube"],
                            type="filepath",
                            label="LUT cube File")
                with gr.Row():
                    lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=default_lut_example_img)
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("""
                        ### Included Filters (LUTs)
                        There are several included Filters:

                        Try them on the example image before applying to your Input Image.
                        """, elem_id="lut_markdown")
                    with gr.Column():
                        gr.Examples(elem_id="lut_examples",
                            examples=[[f] for f in lut_files],
                            inputs=[lut_filename],
                            outputs=[lut_filename],
                            label="Select a Filter (LUT) file. Populate the LUT File Name field"
                        )
                    
                with gr.Row():
                    apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
                    
                lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename])
                lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image])
                apply_lut_button.click(
                    lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0], 
                    inputs=[lut_filename, input_image], 
                    outputs=[input_image], 
                    scroll_to_output=True
                )
    with gr.Row():
        with gr.Accordion("Generative AI", open = False):
            with gr.Column(scale=3):
                prompt = gr.Textbox(label="Prompt", lines=1, placeholder=":/ choose the LoRA and type the prompt ", value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down")
            with gr.Column(scale=1, elem_id="gen_column"):
                generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
            with gr.Row():
                with gr.Column(scale=0):
                    selected_info = gr.Markdown("")
                    gallery = gr.Gallery(
                        [(item["image"], item["title"]) for item in loras],
                        label="LoRA Styles",
                        allow_preview=False,
                        columns=3,
                        elem_id="gallery",
                        show_share_button=False
                    )
                    with gr.Group():
                        custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
                        gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
                    custom_lora_info = gr.HTML(visible=False)
                    custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
                with gr.Column(scale=2):
                    # conditioning_image = gr.Image(label="Conditioning Image",
                    #     type="filepath",
                    #     interactive=True,
                    #     elem_classes="centered solid imgcontainer",
                    #     key="imgConditioning",
                    #     image_mode=None,
                    #     format="PNG", 
                    #     show_download_button=True
                    # )
                    with gr.Row():
                        with gr.Column(scale=1):
                            # Gallery from PRE_RENDERED_IMAGES GOES HERE
                            prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)                            
                        with gr.Column(scale=1):
                            #image_guidance_stength = gr.Slider(label="Image Guidance Strength", minimum=0, maximum=1.0, value=0.25, step=0.01, interactive=True)
                            replace_input_image_button = gr.Button(
                                "Replace Input Image",
                                elem_id="prerendered_replace_input_image_button",
                                elem_classes="solid"
                            )                        
                            generate_input_image_from_gallery = gr.Button(
                                "Generate AI Image from Gallery",
                                elem_id="generate_input_image_from_gallery",
                                elem_classes="solid"
                            )
                    with gr.Accordion("Advanced Settings", open=False):
                        with gr.Row():
                            image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
                        with gr.Column():
                            with gr.Row():
                                cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
                                steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
                
                            with gr.Row():
                                negative_prompt_textbox = gr.Textbox(
                                        label="Negative Prompt",
                                        visible=False,
                                        elem_classes="solid",
                                        value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text"
                                )
                                # Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1
                                # The values of height and width are based on common resolutions for each aspect ratio
                                # Default to 16x9, 1024x576
                                image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True)
                                width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=576)
                                height = gr.Slider(label="Height", minimum=256, maximum=2560, step=16, value=1024, interactive=False)
                                image_size_ratio.change(
                                    fn=update_dimensions_on_ratio,
                                    inputs=[image_size_ratio, width],
                                    outputs=[width, height]
                                )
                                width.change(
                                    fn=lambda *args: update_dimensions_on_ratio(*args)[1],
                                    inputs=[image_size_ratio, width],
                                    outputs=[height]
                                )
                            with gr.Row():
                                randomize_seed = gr.Checkbox(True, label="Randomize seed")
                                seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                                lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
    with gr.Row():
        gr.HTML(value=versions_html(), visible=True, elem_id="versions")

    # Event Handlers
    prerendered_image_gallery.select(
        fn=on_prerendered_gallery_selection, 
        inputs=None, 
        outputs=[gr.State(current_prerendered_image)],  # Update the state with the selected image
        show_api=False
    )
    # replace input image with selected gallery image
    replace_input_image_button.click(
        lambda: current_prerendered_image.value,
        inputs=None,
        outputs=[input_image], scroll_to_output=True
    )
    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )
    custom_lora.input(
        add_custom_lora,
        inputs=[custom_lora],
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
    )
    custom_lora_button.click(
        remove_custom_lora,
        outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
    )
    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[input_image, seed, progress_bar]
    )

app.queue()
app.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb")