Spaces:
Sleeping
Sleeping
File size: 35,789 Bytes
f674364 86ffa71 f674364 86ffa71 aaedf4f 86ffa71 f674364 aaedf4f 86ffa71 f674364 86ffa71 f674364 aaedf4f f674364 aaedf4f f674364 aaedf4f f674364 aaedf4f f674364 86ffa71 f674364 86ffa71 f674364 aaedf4f f674364 86ffa71 aaedf4f f674364 86ffa71 f674364 aaedf4f f674364 86ffa71 aaedf4f f674364 aaedf4f f674364 aaedf4f f674364 aaedf4f f674364 aaedf4f f674364 aaedf4f f674364 aaedf4f f674364 aaedf4f 86ffa71 f674364 aaedf4f f674364 aaedf4f f674364 86ffa71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
import os
import json
import copy
import time
import random
import logging
import numpy as np
from typing import Any, Dict, List, Optional, Union
import torch
from PIL import Image
import gradio as gr
from diffusers import (
DiffusionPipeline,
AutoencoderTiny,
AutoencoderKL,
AutoPipelineForImage2Image,
FluxPipeline,
FlowMatchEulerDiscreteScheduler)
from huggingface_hub import (
hf_hub_download,
HfFileSystem,
ModelCard,
snapshot_download)
from diffusers.utils import load_image
from modules.version_info import (
versions_html,
#initialize_cuda,
#release_torch_resources,
#get_torch_info
)
from modules.image_utils import (
change_color,
open_image,
build_prerendered_images,
upscale_image,
lerp_imagemath,
shrink_and_paste_on_blank,
show_lut,
apply_lut_to_image_path,
multiply_and_blend_images,
alpha_composite_with_control,
crop_and_resize_image,
convert_to_rgba_png
)
from modules.constants import (
LORA_DETAILS, LORAS as loras, MODELS,
default_lut_example_img,
lut_files,
MAX_SEED,
lut_folder,cards,
cards_alternating,
card_colors,
card_colors_alternating,
pre_rendered_maps_paths
)
from modules.excluded_colors import (
add_color,
delete_color,
build_dataframe,
on_input,
excluded_color_list,
on_color_display_select
)
from modules.misc import (
get_filename,
convert_ratio_to_dimensions,
update_dimensions_on_ratio
)
from modules.lora_details import (
approximate_token_count,
split_prompt_precisely,
)
import spaces
input_image_palette = []
current_prerendered_image = gr.State("./images/images/Beeuty-1.png")
#---if workspace = local or colab---
# Authenticate with Hugging Face
# from huggingface_hub import login
# Log in to Hugging Face using the provided token
# hf_token = 'hf-token-authentication'
# login(hf_token)
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
# FLUX pipeline
@torch.inference_mode()
def flux_pipe_call_that_returns_an_iterable_of_images(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 3.5,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
max_sequence_length: int = 512,
good_vae: Optional[Any] = None,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
self._num_timesteps = len(timesteps)
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
for i, t in enumerate(timesteps):
if self.interrupt:
continue
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
latents_for_image = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents_for_image = (latents_for_image / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents_for_image, return_dict=False)[0]
yield self.image_processor.postprocess(image, output_type=output_type)[0]
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
torch.cuda.empty_cache()
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / good_vae.config.scaling_factor) + good_vae.config.shift_factor
image = good_vae.decode(latents, return_dict=False)[0]
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
yield self.image_processor.postprocess(image, output_type=output_type)[0]
#--------------------------------------------------Model Initialization-----------------------------------------------------------------------------------------#
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
#TAEF1 is very tiny autoencoder which uses the same "latent API" as FLUX.1's VAE. FLUX.1 is useful for real-time previewing of the FLUX.1 generation process.#
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✅"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=120)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
if approximate_token_count(prompt_mash) > 76:
prompt, prompt2 = split_prompt_precisely(prompt_mash)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt,
prompt2=prompt2,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
good_vae=good_vae,
):
yield img
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, lora_scale, seed):
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe_i2i.to("cuda")
image_input = load_image(image_input_path)
if approximate_token_count(prompt_mash) > 76:
prompt, prompt2 = split_prompt_precisely(prompt_mash)
final_image = pipe_i2i(
prompt=prompt,
prompt2=prompt2,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
output_type="pil",
).images[0]
return final_image
@spaces.GPU(duration=120)
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if selected_index is None:
raise gr.Error("You must select a LoRA before proceeding.🧨")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
pipe_i2i.unload_lora_weights()
#LoRA weights flow
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
pipe_to_use = pipe_i2i if image_input is not None else pipe
weight_name = selected_lora.get("weights", None)
pipe_to_use.load_lora_weights(
lora_path,
weight_name=weight_name,
low_cpu_mem_usage=True
)
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if(image_input is not None):
print(f"\nGenerating image to image with seed: {seed}\n")
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
yield final_image, seed, gr.update(visible=False)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
yield final_image, seed, gr.update(value=progress_bar, visible=False)
def get_huggingface_safetensors(link):
split_link = link.split("/")
if(len(split_link) == 2):
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
#Allows Both
if base_model not in MODELS:
#if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
raise Exception("Flux LoRA Not Found!")
# Only allow "black-forest-labs/FLUX.1-dev"
#if base_model != "black-forest-labs/FLUX.1-dev":
#raise Exception("Only FLUX.1-dev is supported, other LoRA models are not allowed!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if(file.endswith(".safetensors")):
safetensors_name = file.split("/")[-1]
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if(link.startswith("https://")):
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if(custom_lora):
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if(not existing_item_index):
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=False), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def on_prerendered_gallery_selection(event_data: gr.SelectData):
global current_prerendered_image
selected_index = event_data.index
selected_image = pre_rendered_maps_paths[selected_index]
print(f"Gallery Image Selected: {selected_image}\n")
current_prerendered_image.value = selected_image
return current_prerendered_image
run_lora.zerogpu = True
title = "Hex Game Maker"
with gr.Blocks(css_paths="style_20250128.css", title=title, theme='Surn/beeuty', delete_cache=(7200, 7200)) as app:
with gr.Row():
gr.Markdown("""
# Hex Game Maker
## Transform Your Images into Mesmerizing Hexagon Grid Masterpieces! ⬢""", elem_classes="intro")
with gr.Row():
with gr.Accordion("Welcome to Hex Game Maker, the ultimate tool for transforming your images into stunning hexagon grid artworks. Whether you're a tabletop game enthusiast, a digital artist, or someone who loves unique patterns, HexaGrid Creator has something for you.", open=False, elem_classes="intro"):
gr.Markdown ("""
## Drop an image into the Input Image and get started!
## What is Hex Game Maker?
Hex Game Maker is a web-based application that allows you to apply a hexagon grid overlay to any image. You can customize the size, color, and opacity of the hexagons, as well as the background and border colors. The result is a visually striking image that looks like it was made from hexagonal tiles!
### What Can You Do?
- **Generate Hexagon Grids:** Create beautiful hexagon grid overlays on any image with fully customizable parameters.
- **AI-Powered Image Generation:** Use advanced AI models to generate images based on your prompts and apply hexagon grids to them.
- **Color Exclusion:** Select and exclude specific colors from your hexagon grid for a cleaner and more refined look.
- **Interactive Customization:** Adjust hexagon size, border size, rotation, background color, and more in real-time.
- **Depth and 3D Model Generation:** Generate depth maps and 3D models from your images for enhanced visualization.
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
- **Add Margins:** Add customizable margins around your images for a polished finish.
### Why You'll Love It
- **Fun and Easy to Use:** With an intuitive interface and real-time previews, creating hexagon grids has never been this fun!
- **Endless Creativity:** Unleash your creativity with endless customization options and see your images transform in unique ways.
- **Hexagon-Inspired Theme:** Enjoy a delightful yellow and purple theme inspired by hexagons! ⬢
- **Advanced AI Models:** Leverage advanced AI models and LoRA weights for high-quality image generation and customization.
### Get Started
1. **Upload or Generate an Image:** Start by uploading your own image or generate one using our AI-powered tool.
2. **Customize Your Grid:** Play around with the settings to create the perfect hexagon grid overlay.
3. **Download and Share:** Once you're happy with your creation, download it and share it with the world!
### Advanced Features
- **Generative AI Integration:** Utilize models like `black-forest-labs/FLUX.1-dev` and various LoRA weights for generating unique images.
- **Pre-rendered Maps:** Access a library of pre-rendered hexagon maps for quick and easy customization.
- **Image Filter [Look-Up Table (LUT)] Application:** Apply filters (LUTs) to your images for color grading and enhancement.
- **Depth and 3D Model Generation:** Create depth maps and 3D models from your images for enhanced visualization.
- **Add Margins:** Customize margins around your images for a polished finish.
Join the hive and start creating with HexaGrid Creator today!
""", elem_classes="intro")
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=2):
progress_bar = gr.Markdown(elem_id="progress",visible=False)
input_image = gr.Image(
label="Input Image",
type="filepath",
interactive=True,
elem_classes="centered solid imgcontainer",
key="imgInput",
image_mode=None,
format="PNG",
show_download_button=True,
)
def on_input_image_change(image_path):
if image_path is None:
gr.Warning("Please upload an Input Image to get started.")
return None
img, img_path = convert_to_rgba_png(image_path)
return img_path
input_image.input(
fn=on_input_image_change,
inputs=[input_image],
outputs=[input_image], scroll_to_output=True,
)
with gr.Column(scale=0):
with gr.Accordion("Hex Coloring and Exclusion", open = False):
with gr.Row():
with gr.Column():
color_picker = gr.ColorPicker(label="Pick a color to exclude",value="#505050")
with gr.Column():
filter_color = gr.Checkbox(label="Filter Excluded Colors from Sampling", value=False,)
exclude_color_button = gr.Button("Exclude Color", elem_id="exlude_color_button", elem_classes="solid")
color_display = gr.DataFrame(label="List of Excluded RGBA Colors", headers=["R", "G", "B", "A"], elem_id="excluded_colors", type="array", value=build_dataframe(excluded_color_list), interactive=True, elem_classes="solid centered")
selected_row = gr.Number(0, label="Selected Row", visible=False)
delete_button = gr.Button("Delete Row", elem_id="delete_exclusion_button", elem_classes="solid")
fill_hex = gr.Checkbox(label="Fill Hex with color from Image", value=True)
with gr.Accordion("Image Filters", open = False):
with gr.Row():
with gr.Column():
composite_color = gr.ColorPicker(label="Color", value="#ede9ac44")
with gr.Column():
composite_opacity = gr.Slider(label="Opacity %", minimum=0, maximum=100, value=50, interactive=True)
with gr.Row():
composite_button = gr.Button("Composite", elem_classes="solid")
with gr.Row():
with gr.Column():
lut_filename = gr.Textbox(
value="",
label="Look Up Table (LUT) File Name",
elem_id="lutFileName")
with gr.Column():
lut_file = gr.File(
value=None,
file_count="single",
file_types=[".cube"],
type="filepath",
label="LUT cube File")
with gr.Row():
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=default_lut_example_img)
with gr.Row():
with gr.Column():
gr.Markdown("""
### Included Filters (LUTs)
There are several included Filters:
Try them on the example image before applying to your Input Image.
""", elem_id="lut_markdown")
with gr.Column():
gr.Examples(elem_id="lut_examples",
examples=[[f] for f in lut_files],
inputs=[lut_filename],
outputs=[lut_filename],
label="Select a Filter (LUT) file. Populate the LUT File Name field"
)
with gr.Row():
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
lut_file.change(get_filename, inputs=[lut_file], outputs=[lut_filename])
lut_filename.change(show_lut, inputs=[lut_filename, lut_example_image], outputs=[lut_example_image])
apply_lut_button.click(
lambda lut_filename, input_image: gr.Warning("Please upload an Input Image to get started.") if input_image is None else apply_lut_to_image_path(lut_filename, input_image)[0],
inputs=[lut_filename, input_image],
outputs=[input_image],
scroll_to_output=True
)
with gr.Row():
with gr.Accordion("Generative AI", open = False):
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder=":/ choose the LoRA and type the prompt ", value="top-down, (rectangular tabletop_map) alien planet map, Battletech_boardgame scifi world with forests, lakes, oceans, continents and snow at the top and bottom, (middle is dark, no_reflections, no_shadows), from directly above. From 100,000 feet looking straight down")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=0):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Styles",
allow_preview=False,
columns=3,
elem_id="gallery",
show_share_button=False
)
with gr.Group():
custom_lora = gr.Textbox(label="Enter Custom LoRA", placeholder="prithivMLmods/Canopus-LoRA-Flux-Anime")
gr.Markdown("[Check the list of FLUX LoRA's](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column(scale=2):
# conditioning_image = gr.Image(label="Conditioning Image",
# type="filepath",
# interactive=True,
# elem_classes="centered solid imgcontainer",
# key="imgConditioning",
# image_mode=None,
# format="PNG",
# show_download_button=True
# )
with gr.Row():
with gr.Column(scale=1):
# Gallery from PRE_RENDERED_IMAGES GOES HERE
prerendered_image_gallery = gr.Gallery(label="Image Gallery", show_label=True, value=build_prerendered_images(pre_rendered_maps_paths), elem_id="gallery", elem_classes="solid", type="filepath", columns=[3], rows=[3], preview=False ,object_fit="contain", height="auto", format="png",allow_preview=False)
with gr.Column(scale=1):
#image_guidance_stength = gr.Slider(label="Image Guidance Strength", minimum=0, maximum=1.0, value=0.25, step=0.01, interactive=True)
replace_input_image_button = gr.Button(
"Replace Input Image",
elem_id="prerendered_replace_input_image_button",
elem_classes="solid"
)
generate_input_image_from_gallery = gr.Button(
"Generate AI Image from Gallery",
elem_id="generate_input_image_from_gallery",
elem_classes="solid"
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
negative_prompt_textbox = gr.Textbox(
label="Negative Prompt",
visible=False,
elem_classes="solid",
value="Earth, low quality, bad anatomy, blurry, cropped, worst quality, shadows, people, humans, reflections, shadows, realistic map of the Earth, isometric, text"
)
# Add Dropdown for sizing of Images, height and width based on selection. Options are 16x9, 16x10, 4x5, 1x1
# The values of height and width are based on common resolutions for each aspect ratio
# Default to 16x9, 1024x576
image_size_ratio = gr.Dropdown(label="Image Size", choices=["16:9", "16:10", "4:5", "4:3", "2:1","3:2","1:1", "9:16", "10:16", "5:4", "3:4","1:2", "2:3"], value="16:9", elem_classes="solid", type="value", scale=0, interactive=True)
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=576)
height = gr.Slider(label="Height", minimum=256, maximum=2560, step=16, value=1024, interactive=False)
image_size_ratio.change(
fn=update_dimensions_on_ratio,
inputs=[image_size_ratio, width],
outputs=[width, height]
)
width.change(
fn=lambda *args: update_dimensions_on_ratio(*args)[1],
inputs=[image_size_ratio, width],
outputs=[height]
)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
with gr.Row():
gr.HTML(value=versions_html(), visible=True, elem_id="versions")
# Event Handlers
prerendered_image_gallery.select(
fn=on_prerendered_gallery_selection,
inputs=None,
outputs=[gr.State(current_prerendered_image)], # Update the state with the selected image
show_api=False
)
# replace input image with selected gallery image
replace_input_image_button.click(
lambda: current_prerendered_image.value,
inputs=None,
outputs=[input_image], scroll_to_output=True
)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt]
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[input_image, seed, progress_bar]
)
app.queue()
app.launch(allowed_paths=["assets","/","./assets","images","./images", "./images/prerendered"], favicon_path="./assets/favicon.ico", max_file_size="10mb") |