import streamlit as st import torch from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer from keybert import KeyBERT import matplotlib.pyplot as plt # Load models kw_model = KeyBERT("sentence-transformers/paraphrase-MiniLM-L6-v2") summarizer = pipeline("summarization", model="facebook/bart-large-cnn") gpt2_model = GPT2LMHeadModel.from_pretrained("gpt2") gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2") st.title("🔍 AI Summarizer: BERT + GPT-2") st.write("Extract key points with **KeyBERT**, summarize with **BERT (BART)** and **GPT-2**, and compare their accuracy.") # User input text = st.text_area("Enter text to summarize:") if st.button("Summarize"): if not text.strip(): st.warning("Please enter some text!") else: # Extract Key Points using KeyBERT key_points = kw_model.extract_keywords(text, keyphrase_ngram_range=(1, 2), stop_words='english', top_n=5) extracted_points = ", ".join([kp[0] for kp in key_points]) # Summarization using BART (BERT-based model) bart_summary = summarizer(text, max_length=150, min_length=50, do_sample=False)[0]['summary_text'] # Summarization using GPT-2 inputs = gpt2_tokenizer.encode("Summarize: " + text, return_tensors="pt", max_length=512, truncation=True) gpt2_summary_ids = gpt2_model.generate(inputs, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2) gpt2_summary = gpt2_tokenizer.decode(gpt2_summary_ids[0], skip_special_tokens=True) # Display results st.subheader("🔑 Key Points") st.write(extracted_points) st.subheader("📖 Summary (BERT - BART)") st.write(bart_summary) st.subheader("🤖 Summary (GPT-2)") st.write(gpt2_summary) # Performance Comparison (Word Count) bart_length = len(bart_summary.split()) gpt2_length = len(gpt2_summary.split()) # Plotting fig, ax = plt.subplots() ax.bar(["BERT (BART)", "GPT-2"], [bart_length, gpt2_length], color=["blue", "red"]) ax.set_ylabel("Word Count") ax.set_title("Comparison of Summary Lengths") st.pyplot(fig)