# Use a pipeline as a high-level helper from transformers import pipeline import streamlit as st # dslim/bert-base-NER # SIRIS-Lab/affilgood-NER-multilingual # FacebookAI/xlm-roberta-large-finetuned-conll03-english # fintuned_ner_models = ["dslim/bert-base-NER", "SIRIS-Lab/affilgood-NER-multilingual", "FacebookAI/xlm-roberta-large-finetuned-conll03-english"] def ner_models_result(address, models = fintuned_ner_models): ner_result_entities = [] for model in models: pipe = pipeline("ner", model=f"{model}", aggregation_strategy="simple") ner_result_entities.append((model, pipe(address))) return ner_result_entities st.title("Basic NER model testing") affiliation_address = st.text_input("Enter address") if st.button("Print"): ner_results = ner_models_result(address = affiliation_address) for result in ner_results: st.write("-"*50) st.write(f"Model: {result[0]}") st.write(f"Result: {result[1]}!")