Spaces:
Running
Running
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
import streamlit as st | |
# dslim/bert-base-NER | |
# SIRIS-Lab/affilgood-NER-multilingual | |
# FacebookAI/xlm-roberta-large-finetuned-conll03-english | |
# | |
fintuned_ner_models = ["dslim/bert-base-NER", "SIRIS-Lab/affilgood-NER-multilingual", "FacebookAI/xlm-roberta-large-finetuned-conll03-english"] | |
def ner_models_result(address, models = fintuned_ner_models): | |
ner_result_entities = [] | |
for model in models: | |
pipe = pipeline("ner", model=f"{model}", aggregation_strategy="simple") | |
ner_result_entities.append((model, pipe(address))) | |
return ner_result_entities | |
st.title("Basic NER model testing") | |
affiliation_address = st.text_input("Enter address") | |
if st.button("Print"): | |
ner_results = ner_models_result(address = affiliation_address) | |
for result in ner_results: | |
st.write("-"*50) | |
st.write(f"Model: {result[0]}") | |
st.write(f"Result: {result[1]}!") | |