import os import cv2 import argparse import torch import numpy as np import torch.nn.functional as F from tqdm import tqdm from ddcolor_model import DDColor class ImageColorizationPipeline: def __init__(self, model_path, input_size=256, model_size='large'): self.input_size = input_size self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.encoder_name = 'convnext-t' if model_size == 'tiny' else 'convnext-l' self.decoder_type = 'MultiScaleColorDecoder' self.model = DDColor( encoder_name=self.encoder_name, decoder_name=self.decoder_type, input_size=[self.input_size, self.input_size], num_output_channels=2, last_norm='Spectral', do_normalize=False, num_queries=100, num_scales=3, dec_layers=9, ).to(self.device) # Load model weights self.model.load_state_dict( torch.load(model_path, map_location='cpu')['params'], strict=False ) self.model.eval() @torch.no_grad() def process(self, img): height, width = img.shape[:2] img = (img / 255.0).astype(np.float32) orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1) # Resize and convert image to grayscale img_resized = cv2.resize(img, (self.input_size, self.input_size)) img_l = cv2.cvtColor(img_resized, cv2.COLOR_BGR2Lab)[:, :, :1] img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) output_ab = self.model(tensor_gray_rgb).cpu() # (1, 2, self.input_size, self.input_size) # Resize output and concatenate with original L channel output_ab_resized = F.interpolate(output_ab, size=(height, width))[0].float().numpy().transpose(1, 2, 0) output_lab = np.concatenate((orig_l, output_ab_resized), axis=-1) output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) output_img = (output_bgr * 255.0).round().astype(np.uint8) return output_img def main(): parser = argparse.ArgumentParser() parser.add_argument('--model_path', type=str, default='modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt', help='Path to the model weights') parser.add_argument('--input', type=str, default='assets/test_images', help='Input image folder') parser.add_argument('--output', type=str, default='results', help='Output folder') parser.add_argument('--input_size', type=int, default=512, help='Input size for the model') parser.add_argument('--model_size', type=str, default='large', help='DDColor model size (tiny or large)') args = parser.parse_args() print(f'Output path: {args.output}') os.makedirs(args.output, exist_ok=True) file_list = os.listdir(args.input) assert len(file_list) > 0, "No images found in the input directory." colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size) for file_name in tqdm(file_list): img_path = os.path.join(args.input, file_name) img = cv2.imread(img_path) if img is not None: image_out = colorizer.process(img) cv2.imwrite(os.path.join(args.output, file_name), image_out) else: print(f"Failed to read {img_path}") if __name__ == '__main__': main()