|
import sys |
|
sys.path.append('/DDColor') |
|
|
|
import argparse |
|
import cv2 |
|
import numpy as np |
|
import os |
|
from tqdm import tqdm |
|
import torch |
|
from basicsr.archs.ddcolor_arch import DDColor |
|
import torch.nn.functional as F |
|
|
|
import gradio as gr |
|
from gradio_imageslider import ImageSlider |
|
import uuid |
|
from PIL import Image |
|
|
|
model_path = 'modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt' |
|
input_size = 512 |
|
model_size = 'large' |
|
|
|
|
|
|
|
class ImageColorizationPipeline(object): |
|
|
|
def __init__(self, model_path, input_size=256, model_size='large'): |
|
|
|
self.input_size = input_size |
|
if torch.cuda.is_available(): |
|
self.device = torch.device('cuda') |
|
else: |
|
self.device = torch.device('cpu') |
|
|
|
if model_size == 'tiny': |
|
self.encoder_name = 'convnext-t' |
|
else: |
|
self.encoder_name = 'convnext-l' |
|
|
|
self.decoder_type = "MultiScaleColorDecoder" |
|
|
|
if self.decoder_type == 'MultiScaleColorDecoder': |
|
self.model = DDColor( |
|
encoder_name=self.encoder_name, |
|
decoder_name='MultiScaleColorDecoder', |
|
input_size=[self.input_size, self.input_size], |
|
num_output_channels=2, |
|
last_norm='Spectral', |
|
do_normalize=False, |
|
num_queries=100, |
|
num_scales=3, |
|
dec_layers=9, |
|
).to(self.device) |
|
else: |
|
self.model = DDColor( |
|
encoder_name=self.encoder_name, |
|
decoder_name='SingleColorDecoder', |
|
input_size=[self.input_size, self.input_size], |
|
num_output_channels=2, |
|
last_norm='Spectral', |
|
do_normalize=False, |
|
num_queries=256, |
|
).to(self.device) |
|
|
|
self.model.load_state_dict( |
|
torch.load(model_path, map_location=torch.device('cpu'))['params'], |
|
strict=False) |
|
self.model.eval() |
|
|
|
@torch.no_grad() |
|
def process(self, img): |
|
self.height, self.width = img.shape[:2] |
|
img = (img / 255.0).astype(np.float32) |
|
orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] |
|
|
|
|
|
img = cv2.resize(img, (self.input_size, self.input_size)) |
|
img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] |
|
img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1) |
|
img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB) |
|
|
|
tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device) |
|
output_ab = self.model(tensor_gray_rgb).cpu() |
|
|
|
|
|
output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0) |
|
output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1) |
|
output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR) |
|
|
|
output_img = (output_bgr * 255.0).round().astype(np.uint8) |
|
|
|
return output_img |
|
|
|
|
|
|
|
colorizer = ImageColorizationPipeline(model_path=model_path, |
|
input_size=input_size, |
|
model_size=model_size) |
|
|
|
|
|
|
|
def colorize(img): |
|
image_out = colorizer.process(img) |
|
|
|
unique_imgfilename = str(uuid.uuid4()) + '.png' |
|
cv2.imwrite(unique_imgfilename, image_out) |
|
return (img, unique_imgfilename) |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
bw_image = gr.Image(label='Black and White Input Image') |
|
btn = gr.Button('Convert using DDColor') |
|
with gr.Column(): |
|
col_image_slider = ImageSlider(position=0.5, |
|
label='Colored Image with Slider-view') |
|
|
|
btn.click(colorize, bw_image, col_image_slider) |
|
demo.launch() |