File size: 9,281 Bytes
00e6746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn as nn

from basicsr.archs.ddcolor_arch_utils.unet import Hook, CustomPixelShuffle_ICNR,  UnetBlockWide, NormType, custom_conv_layer
from basicsr.archs.ddcolor_arch_utils.convnext import ConvNeXt
from basicsr.archs.ddcolor_arch_utils.transformer_utils import SelfAttentionLayer, CrossAttentionLayer, FFNLayer, MLP
from basicsr.archs.ddcolor_arch_utils.position_encoding import PositionEmbeddingSine


class DDColor(nn.Module):
    def __init__(
        self,
        encoder_name='convnext-l',
        decoder_name='MultiScaleColorDecoder',
        num_input_channels=3,
        input_size=(256, 256),
        nf=512,
        num_output_channels=3,
        last_norm='Weight',
        do_normalize=False,
        num_queries=256,
        num_scales=3,
        dec_layers=9,
    ):
        super().__init__()

        self.encoder = ImageEncoder(encoder_name, ['norm0', 'norm1', 'norm2', 'norm3'])
        self.encoder.eval()
        test_input = torch.randn(1, num_input_channels, *input_size)
        self.encoder(test_input)

        self.decoder = DuelDecoder(
            self.encoder.hooks,
            nf=nf,
            last_norm=last_norm,
            num_queries=num_queries,
            num_scales=num_scales,
            dec_layers=dec_layers,
            decoder_name=decoder_name
        )

        self.refine_net = nn.Sequential(
            custom_conv_layer(num_queries + 3, num_output_channels, ks=1, use_activ=False, norm_type=NormType.Spectral)
        )
    
        self.do_normalize = do_normalize
        self.register_buffer('mean', torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
        self.register_buffer('std', torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))

    def normalize(self, img):
        return (img - self.mean) / self.std

    def denormalize(self, img):
        return img * self.std + self.mean

    def forward(self, x):
        if x.shape[1] == 3:
            x = self.normalize(x)
        
        self.encoder(x)
        out_feat = self.decoder()
        coarse_input = torch.cat([out_feat, x], dim=1)
        out = self.refine_net(coarse_input)

        if self.do_normalize:
            out = self.denormalize(out)
        return out


class ImageEncoder(nn.Module):
    def __init__(self, encoder_name, hook_names):
        super().__init__()

        assert encoder_name == 'convnext-t' or encoder_name == 'convnext-l'
        if encoder_name == 'convnext-t':
            self.arch = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768])
        elif encoder_name == 'convnext-l':
            self.arch = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536])
        else:
            raise NotImplementedError

        self.encoder_name = encoder_name
        self.hook_names = hook_names
        self.hooks = self.setup_hooks()

    def setup_hooks(self):
        hooks = [Hook(self.arch._modules[name]) for name in self.hook_names]
        return hooks

    def forward(self, x):
        return self.arch(x)


class DuelDecoder(nn.Module):
    def __init__(
        self,
        hooks,
        nf=512,
        blur=True,
        last_norm='Weight',
        num_queries=256,
        num_scales=3,
        dec_layers=9,
        decoder_name='MultiScaleColorDecoder',
    ):
        super().__init__()
        self.hooks = hooks
        self.nf = nf
        self.blur = blur
        self.last_norm = getattr(NormType, last_norm)
        self.decoder_name = decoder_name

        self.layers = self.make_layers()
        embed_dim = nf // 2
        self.last_shuf = CustomPixelShuffle_ICNR(embed_dim, embed_dim, blur=self.blur, norm_type=self.last_norm, scale=4)
        
        assert decoder_name == 'MultiScaleColorDecoder'
        self.color_decoder = MultiScaleColorDecoder(
            in_channels=[512, 512, 256],
            num_queries=num_queries,
            num_scales=num_scales,
            dec_layers=dec_layers,
        )

    def make_layers(self):
        decoder_layers = []
        in_c = self.hooks[-1].feature.shape[1]
        out_c = self.nf

        setup_hooks = self.hooks[-2::-1]
        for layer_index, hook in enumerate(setup_hooks):
            feature_c = hook.feature.shape[1]
            if layer_index == len(setup_hooks) - 1:
                out_c = out_c // 2
            decoder_layers.append(
                UnetBlockWide(
                    in_c, feature_c, out_c, hook, blur=self.blur, self_attention=False, norm_type=NormType.Spectral))
            in_c = out_c

        return nn.Sequential(*decoder_layers)

    def forward(self):
        encode_feat = self.hooks[-1].feature
        out0 = self.layers[0](encode_feat)
        out1 = self.layers[1](out0) 
        out2 = self.layers[2](out1) 
        out3 = self.last_shuf(out2) 

        return self.color_decoder([out0, out1, out2], out3)


class MultiScaleColorDecoder(nn.Module):
    def __init__(
        self,
        in_channels,
        hidden_dim=256,
        num_queries=100,
        nheads=8,
        dim_feedforward=2048,
        dec_layers=9,
        pre_norm=False,
        color_embed_dim=256,
        enforce_input_project=True,
        num_scales=3,
    ):
        super().__init__()

        self.hidden_dim = hidden_dim
        self.num_queries = num_queries
        self.num_layers = dec_layers
        self.num_feature_levels = num_scales  

        # Positional encoding layer
        self.pe_layer = PositionEmbeddingSine(hidden_dim // 2, normalize=True)
        
        # Learnable query features and embeddings
        self.query_feat = nn.Embedding(num_queries, hidden_dim)
        self.query_embed = nn.Embedding(num_queries, hidden_dim)

        # Learnable level embeddings
        self.level_embed = nn.Embedding(num_scales, hidden_dim)

        # Input projection layers
        self.input_proj = nn.ModuleList(
            [self._make_input_proj(in_ch, hidden_dim, enforce_input_project) for in_ch in in_channels]
        )

        # Transformer layers
        self.transformer_self_attention_layers = nn.ModuleList()
        self.transformer_cross_attention_layers = nn.ModuleList()
        self.transformer_ffn_layers = nn.ModuleList()

        for _ in range(dec_layers):
            self.transformer_self_attention_layers.append(
                SelfAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )
            self.transformer_cross_attention_layers.append(
                CrossAttentionLayer(
                    d_model=hidden_dim,
                    nhead=nheads,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )
            self.transformer_ffn_layers.append(
                FFNLayer(
                    d_model=hidden_dim,
                    dim_feedforward=dim_feedforward,
                    dropout=0.0,
                    normalize_before=pre_norm,
                )
            )

        # Layer normalization for the decoder output
        self.decoder_norm = nn.LayerNorm(hidden_dim)
        
        # Output embedding layer
        self.color_embed = MLP(hidden_dim, hidden_dim, color_embed_dim, 3)

    def forward(self, x, img_features):
        assert len(x) == self.num_feature_levels

        src, pos = self._get_src_and_pos(x)

        bs = src[0].shape[1]

        # Prepare query embeddings (QxNxC)
        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)
    
        for i in range(self.num_layers):
            level_index = i % self.num_feature_levels
            # attention: cross-attention first
            output = self.transformer_cross_attention_layers[i](
                output, src[level_index],
                memory_mask=None,
                memory_key_padding_mask=None,
                pos=pos[level_index], query_pos=query_embed
            )
            output = self.transformer_self_attention_layers[i](
                output, tgt_mask=None,
                tgt_key_padding_mask=None,
                query_pos=query_embed
            )
            # FFN
            output = self.transformer_ffn_layers[i](
                output
            )

        decoder_output = self.decoder_norm(output).transpose(0, 1)
        color_embed = self.color_embed(decoder_output)
    
        out = torch.einsum("bqc,bchw->bqhw", color_embed, img_features)

        return out

    def _make_input_proj(self, in_ch, hidden_dim, enforce):
        if in_ch != hidden_dim or enforce:
            proj = nn.Conv2d(in_ch, hidden_dim, kernel_size=1)
            nn.init.kaiming_uniform_(proj.weight, a=1)
            if proj.bias is not None:
                nn.init.constant_(proj.bias, 0)
            return proj
        return nn.Sequential()

    def _get_src_and_pos(self, x):
        src, pos = [], []
        for i, feature in enumerate(x):
            pos.append(self.pe_layer(feature).flatten(2).permute(2, 0, 1))  # flatten NxCxHxW to HWxNxC
            src.append((self.input_proj[i](feature).flatten(2) + self.level_embed.weight[i][None, :, None]).permute(2, 0, 1))
        return src, pos