Steveeeeeeen's picture
Steveeeeeeen HF Staff
Update app.py
7c8dfad verified
raw
history blame contribute delete
15.5 kB
import gradio as gr
import pandas as pd
import json
import os
from constants import LEADERBOARD_CSS, EXPLANATION, EXPLANATION_EDACC, EXPLANATION_AFRI
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
from datetime import datetime, timezone
from huggingface_hub import HfApi, upload_file
LAST_UPDATED = "Nov 22th 2024"
column_names = {
"model": "Model",
"Average WER ⬇️": "Average WER ⬇️",
"Average Female WER ⬇️": "Average Female WER ⬇️",
"Average Male WER ⬇️": "Average Male WER ⬇️",
"RTFx": "RTFx ⬆️️",
"Bulgarian_female": "Bulgarian female",
"Bulgarian_male": "Bulgarian male",
"Catalan_female": "Catalan female",
"Chinese_female": "Chinese female",
"Chinese_male": "Chinese male",
"Eastern_European_male": "Eastern European male",
"European_male": "European male",
"French_female": "French female",
"Ghanain_English_female": "Ghanain English female",
"Indian_English_female": "Indian English female",
"Indian_English_male": "Indian English male",
"Indonesian_female": "Indonesian female",
"Irish_English_female": "Irish English female",
"Irish_English_male": "Irish English male",
"Israeli_male": "Israeli male",
"Italian_female": "Italian female",
"Jamaican_English_female": "Jamaican English female",
"Jamaican_English_male": "Jamaican English male",
"Kenyan_English_female": "Kenyan English female",
"Kenyan_English_male": "Kenyan English male",
"Latin_American_female": "Latin American female",
"Latin_American_male": "Latin American male",
"Lithuanian_male": "Lithuanian male",
"Mainstream_US_English_female": "Mainstream US English female",
"Mainstream_US_English_male": "Mainstream US English male",
"Nigerian_English_female": "Nigerian English female",
"Nigerian_English_male": "Nigerian English male",
"Romanian_female": "Romanian female",
"Scottish_English_male": "Scottish English male",
"Southern_British_English_male": "Southern British English male",
"Spanish_female": "Spanish female",
"Spanish_male": "Spanish male",
"Vietnamese_female": "Vietnamese female",
"Vietnamese_male": "Vietnamese male",
"agatu_test": "Agatu",
"angas_test": "Angas",
"bajju_test": "Bajju",
"bini_test": "Bini",
"brass_test": "Brass",
"delta_test": "Delta",
"eggon_test": "Eggon",
"ekene_test": "Ekene",
"ekpeye_test": "Ekpeye",
"gbagyi_test": "Gbagyi",
"igarra_test": "Igarra",
"ijaw-nembe_test": "Ijaw-Nembe",
"ikulu_test": "Ikulu",
"jaba_test": "Jaba",
"jukun_test": "Jukun",
"khana_test": "Khana",
"mada_test": "Mada",
"mwaghavul_test": "Mwaghavul",
"ukwuani_test": "Ukwuani",
"yoruba-hausa_test": "Yoruba-Hausa",
}
african_cols = ["Ghanain English female", "Kenyan English female", "Kenyan English male", "Nigerian English female", "Nigerian English male"]
north_american_cols = ["Mainstream US English female", "Mainstream US English male"]
caribbean_cols = ["Jamaican English female", "Jamaican English male"]
latin_american_cols = ["Latin American female", "Latin American male"]
british_cols = ["Irish English female", "Irish English male", "Scottish English male", "Southern British English male"]
european_cols = ["Eastern European male", "European male", "French female", "Italian female", "Spanish female", "Spanish male", "Catalan female", "Bulgarian female", "Bulgarian male", "Lithuanian male", "Romanian female"]
asian_cols = ["Chinese female", "Chinese male", "Indonesian female", "Vietnamese female", "Vietnamese male", "Indian English female", "Indian English male"]
eval_queue_repo_edacc, requested_models, csv_results_edacc, csv_results_afrispeech = load_all_info_from_dataset_hub()
if not csv_results_edacc.exists():
raise Exception(f"CSV file {csv_results_edacc} does not exist locally")
# Get csv with data and parse columns
original_df = pd.read_csv(csv_results_edacc)
afrispeech_df = pd.read_csv(csv_results_afrispeech)
# Formats the columns
def formatter(x):
if type(x) is str:
x = x
else:
x = round(x, 2)
return x
for col in original_df.columns:
if col == "model":
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
else:
original_df[col] = original_df[col].apply(formatter) # For numerical values
for col in afrispeech_df.columns:
if col == "model":
afrispeech_df[col] = afrispeech_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
else:
afrispeech_df[col] = afrispeech_df[col].apply(formatter) # For numerical values
original_df.rename(columns=column_names, inplace=True)
original_df.sort_values(by='Average WER ⬇️', inplace=True)
afrispeech_df.rename(columns=column_names, inplace=True)
afrispeech_df.sort_values(by='Average WER ⬇️', inplace=True)
female_cols = [col for col in original_df.columns if 'female' == col.split(' ')[-1]]
male_cols = [col for col in original_df.columns if 'male' == col.split(' ')[-1]]
# Create male DataFrame properly
male_df = original_df[['Model'] + male_cols].copy() # Create explicit copy with model column
male_df.loc[:, 'Average Male WER ⬇️'] = male_df[male_cols].mean(axis=1)
male_df.loc[:, 'Average Male WER ⬇️'] = male_df['Average Male WER ⬇️'].apply(formatter)
male_df = male_df[['Model', 'Average Male WER ⬇️'] + male_cols]
# Create female DataFrame properly
female_df = original_df[['Model'] + female_cols].copy() # Create explicit copy with model column
female_df.loc[:, 'Average Female WER ⬇️'] = female_df[female_cols].mean(axis=1)
female_df.loc[:, 'Average Female WER ⬇️'] = female_df['Average Female WER ⬇️'].apply(formatter)
female_df = female_df[['Model', 'Average Female WER ⬇️'] + female_cols]
african_df = original_df[['Model'] + african_cols].copy()
african_df.loc[:, 'Average African WER ⬇️'] = african_df[african_cols].mean(axis=1)
african_df.loc[:, 'Average African WER ⬇️'] = african_df['Average African WER ⬇️'].apply(formatter)
african_df = african_df[['Model', 'Average African WER ⬇️'] + african_cols]
north_american_df = original_df[['Model'] + north_american_cols].copy()
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df[north_american_cols].mean(axis=1)
north_american_df.loc[:, 'Average North American WER ⬇️'] = north_american_df['Average North American WER ⬇️'].apply(formatter)
north_american_df = north_american_df[['Model', 'Average North American WER ⬇️'] + north_american_cols]
caribbean_df = original_df[['Model'] + caribbean_cols].copy()
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df[caribbean_cols].mean(axis=1)
caribbean_df.loc[:, 'Average Caribbean WER ⬇️'] = caribbean_df['Average Caribbean WER ⬇️'].apply(formatter)
caribbean_df = caribbean_df[['Model', 'Average Caribbean WER ⬇️'] + caribbean_cols]
latin_american_df = original_df[['Model'] + latin_american_cols].copy()
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df[latin_american_cols].mean(axis=1)
latin_american_df.loc[:, 'Average Latin American WER ⬇️'] = latin_american_df['Average Latin American WER ⬇️'].apply(formatter)
latin_american_df = latin_american_df[['Model', 'Average Latin American WER ⬇️'] + latin_american_cols]
british_df = original_df[['Model'] + british_cols].copy()
british_df.loc[:, 'Average British WER ⬇️'] = british_df[british_cols].mean(axis=1)
british_df.loc[:, 'Average British WER ⬇️'] = british_df['Average British WER ⬇️'].apply(formatter)
british_df = british_df[['Model', 'Average British WER ⬇️'] + british_cols]
european_df = original_df[['Model'] + european_cols].copy()
european_df.loc[:, 'Average European WER ⬇️'] = european_df[european_cols].mean(axis=1)
european_df.loc[:, 'Average European WER ⬇️'] = european_df['Average European WER ⬇️'].apply(formatter)
european_df = european_df[['Model', 'Average European WER ⬇️'] + european_cols]
asian_df = original_df[['Model'] + asian_cols].copy()
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df[asian_cols].mean(axis=1)
asian_df.loc[:, 'Average Asian WER ⬇️'] = asian_df['Average Asian WER ⬇️'].apply(formatter)
asian_df = asian_df[['Model', 'Average Asian WER ⬇️'] + asian_cols]
# add average female and mal to original df and place it after average wer
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average African WER ⬇️', african_df['Average African WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average North American WER ⬇️', north_american_df['Average North American WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Caribbean WER ⬇️', caribbean_df['Average Caribbean WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Latin American WER ⬇️', latin_american_df['Average Latin American WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average British WER ⬇️', british_df['Average British WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average European WER ⬇️', european_df['Average European WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Asian WER ⬇️', asian_df['Average Asian WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Female WER ⬇️', female_df['Average Female WER ⬇️'])
original_df.insert(original_df.columns.get_loc('Average WER ⬇️') + 1, 'Average Male WER ⬇️', male_df['Average Male WER ⬇️'])
# Save the updated DataFrame to a temporary CSV file
timestamp = datetime.now(timezone.utc).strftime("%Y%m%d_%H%M%S") # Generate a timestamp
temp_csv_filename = f"updated_leaderboard_{timestamp}.csv" # Create a unique filename
original_df.to_csv(temp_csv_filename, index=False) # Save the DataFrame to a temporary CSV file
# Upload the CSV file to Hugging Face
hf_api = HfApi()
repo_id = "Steveeeeeeen/whisper-leaderboard-evals" # Replace with your Hugging Face repo ID
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
upload_file(
path_or_fileobj=temp_csv_filename,
path_in_repo=f"data/{temp_csv_filename}", # Path in the Hugging Face repo
repo_id=repo_id,
token=TOKEN_HUB,
repo_type="dataset"
)
print(f"Updated leaderboard uploaded to Hugging Face: {repo_id}/data/{temp_csv_filename}")
COLS = [c.name for c in fields(AutoEvalColumn)]
TYPES = [c.type for c in fields(AutoEvalColumn)]
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
# gr.HTML(BANNER, elem_id="banner")
# Write a header with the title
gr.Markdown("<h1>🤫 How Biased is Whisper?</h1>", elem_classes="markdown-text")
gr.Markdown(EXPLANATION, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 Edacc Results", elem_id="od-benchmark-tab-table", id=0):
gr.Markdown(EXPLANATION_EDACC, elem_classes="markdown-text")
# Add column filter dropdown
column_filter = gr.Dropdown(
choices=["All", "Female", "Male", "African", "North American", "Caribbean", "Latin American", "British", "European", "Asian"] + [v for k,v in column_names.items() if k != "model"],
label="Filter by column",
multiselect=True,
value=["All"],
elem_id="column-filter"
)
leaderboard_table = gr.components.Dataframe(
value=original_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Update table columns when filter changes
def update_table(cols):
# Dictionary mapping view names to their corresponding dataframes
view_mapping = {
"All": original_df,
"Female": female_df,
"Male": male_df,
"African": african_df,
"North American": north_american_df,
"Caribbean": caribbean_df,
"Latin American": latin_american_df,
"British": british_df,
"European": european_df,
"Asian": asian_df
}
# Handle special views
selected_special_views = [view for view in view_mapping.keys() if view in cols]
if selected_special_views:
# Start with the first selected view's columns
result_cols = set(view_mapping[selected_special_views[0]].columns)
# Take union of columns from all selected views
for view in selected_special_views[1:]:
result_cols.update(view_mapping[view].columns)
# Convert to list and ensure "Model" is first
result_cols = ["Model"] + sorted(list(result_cols - {"Model"}))
# Merge all relevant columns from original_df
return gr.Dataframe(value=original_df[result_cols])
# If no special view is selected, return filtered columns from original df
selected_cols = ["Model"] + cols # Always include the Model column
return gr.Dataframe(value=original_df[selected_cols])
column_filter.change(
fn=update_table,
inputs=[column_filter],
outputs=[leaderboard_table]
)
with gr.TabItem("🏅 Afrispeech Results", elem_id="od-benchmark-tab-table", id=1):
gr.Markdown(EXPLANATION_AFRI, elem_classes="markdown-text")
# Add column filter dropdown
afrispeech_column_filter = gr.Dropdown(
choices=["All"] + [v for k,v in column_names.items() if k != "model" and v in afrispeech_df.columns],
label="Filter by column",
multiselect=True,
value=["All"],
elem_id="afrispeech-column-filter"
)
leaderboard_table = gr.components.Dataframe(
value=afrispeech_df,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
)
# Update table columns when filter changes
def update_afrispeech_table(cols):
if "All" in cols:
return gr.Dataframe(value=afrispeech_df)
selected_cols = ["Model"] + cols # Always include the Model column
return gr.Dataframe(value=afrispeech_df[selected_cols])
afrispeech_column_filter.change(
fn=update_afrispeech_table,
inputs=[afrispeech_column_filter],
outputs=[leaderboard_table]
)
demo.launch(ssr_mode=False)