Update app.py
Browse files
app.py
CHANGED
@@ -23,19 +23,22 @@ def load_llama_model(model_name):
|
|
23 |
|
24 |
tokenizer = LlamaTokenizer.from_pretrained(model_name, token=HUGGINGFACE_TOKEN)
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
state_dict = torch.
|
29 |
|
30 |
print("✅ Model state dictionary loaded successfully!")
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
# Load the quantized Llama model
|
35 |
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
|
36 |
|
37 |
# Load Llama Guard for content moderation
|
38 |
-
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME
|
39 |
|
40 |
# Define Prompt Templates
|
41 |
PROMPTS = {
|
|
|
23 |
|
24 |
tokenizer = LlamaTokenizer.from_pretrained(model_name, token=HUGGINGFACE_TOKEN)
|
25 |
|
26 |
+
# Manually load `.pth` state dictionary
|
27 |
+
model_url = f"https://huggingface.co/{model_name}/resolve/main/consolidated.00.pth"
|
28 |
+
state_dict = torch.hub.load_state_dict_from_url(model_url, map_location="cpu")
|
29 |
|
30 |
print("✅ Model state dictionary loaded successfully!")
|
31 |
+
|
32 |
+
# Initialize model and load state_dict
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, state_dict=state_dict)
|
34 |
+
|
35 |
+
return tokenizer, model
|
36 |
|
37 |
# Load the quantized Llama model
|
38 |
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
|
39 |
|
40 |
# Load Llama Guard for content moderation
|
41 |
+
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME)
|
42 |
|
43 |
# Define Prompt Templates
|
44 |
PROMPTS = {
|