Update app.py
Browse files
app.py
CHANGED
@@ -13,37 +13,31 @@ if not HUGGINGFACE_TOKEN:
|
|
13 |
|
14 |
print("✅ HUGGINGFACE_TOKEN is set.")
|
15 |
|
16 |
-
# Model Paths
|
17 |
-
|
18 |
-
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
|
19 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
20 |
|
21 |
-
# Function to load Llama model
|
22 |
-
def load_llama_model(
|
23 |
-
print(f"🔄 Loading Model: {
|
24 |
|
25 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
-
|
28 |
token=HUGGINGFACE_TOKEN,
|
29 |
-
torch_dtype=torch.
|
30 |
low_cpu_mem_usage=True
|
31 |
)
|
32 |
|
33 |
-
if adapter and not is_guard:
|
34 |
-
print(f"🔄 Loading Adapter: {adapter}")
|
35 |
-
model = PeftModel.from_pretrained(model, adapter, token=HUGGINGFACE_TOKEN)
|
36 |
-
model = model.merge_and_unload()
|
37 |
-
print("✅ Adapter Loaded Successfully")
|
38 |
-
|
39 |
model.eval()
|
|
|
40 |
return tokenizer, model
|
41 |
|
42 |
-
# Load Llama
|
43 |
-
tokenizer, model = load_llama_model(
|
44 |
|
45 |
# Load Llama Guard for content moderation
|
46 |
-
guard_tokenizer, guard_model = load_llama_model(
|
47 |
|
48 |
# Define Prompt Templates
|
49 |
PROMPTS = {
|
|
|
13 |
|
14 |
print("✅ HUGGINGFACE_TOKEN is set.")
|
15 |
|
16 |
+
# Model Paths
|
17 |
+
QUANTIZED_MODEL = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Directly using quantized model
|
|
|
18 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
19 |
|
20 |
+
# Function to load Llama model (without LoRA)
|
21 |
+
def load_llama_model(model_name, is_guard=False):
|
22 |
+
print(f"🔄 Loading Model: {model_name}")
|
23 |
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_TOKEN)
|
25 |
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_name,
|
27 |
token=HUGGINGFACE_TOKEN,
|
28 |
+
torch_dtype=torch.float16, # Use float16 for optimized performance
|
29 |
low_cpu_mem_usage=True
|
30 |
)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
model.eval()
|
33 |
+
print("✅ Model Loaded Successfully")
|
34 |
return tokenizer, model
|
35 |
|
36 |
+
# Load the quantized Llama model
|
37 |
+
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
|
38 |
|
39 |
# Load Llama Guard for content moderation
|
40 |
+
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME, is_guard=True)
|
41 |
|
42 |
# Define Prompt Templates
|
43 |
PROMPTS = {
|