Update app.py
Browse files
app.py
CHANGED
@@ -18,29 +18,22 @@ MODEL_PATH = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Directly using
|
|
18 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
19 |
|
20 |
# Function to load Llama model (without LoRA)
|
21 |
-
# Load Model Manually (for Quantized Models)
|
22 |
def load_quantized_model(model_path):
|
23 |
print(f"🔄 Loading Quantized Model: {model_path}")
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
# Load quantized state_dict
|
33 |
-
checkpoint_path = os.path.join(model_path, "consolidated.00.pth")
|
34 |
-
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
35 |
-
|
36 |
-
# Load state dict into model
|
37 |
-
model.load_state_dict(state_dict, strict=False)
|
38 |
|
39 |
print("✅ Quantized model loaded successfully!")
|
40 |
return model
|
41 |
|
42 |
# Load Tokenizer
|
43 |
-
tokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH, token=HUGGINGFACE_TOKEN)
|
44 |
|
45 |
# Load the model
|
46 |
model = load_quantized_model(MODEL_PATH)
|
@@ -104,7 +97,7 @@ def generate_response(prompt_type, **kwargs):
|
|
104 |
with torch.no_grad():
|
105 |
outputs = model.generate(
|
106 |
inputs.input_ids,
|
107 |
-
max_length=
|
108 |
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
|
109 |
top_p=0.9,
|
110 |
do_sample=True
|
|
|
18 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
19 |
|
20 |
# Function to load Llama model (without LoRA)
|
|
|
21 |
def load_quantized_model(model_path):
|
22 |
print(f"🔄 Loading Quantized Model: {model_path}")
|
23 |
|
24 |
+
# Use Hugging Face transformers to load the quantized model directly
|
25 |
+
model = LlamaForCausalLM.from_pretrained(
|
26 |
+
model_path,
|
27 |
+
device_map="auto", # Auto-distributes across CPU/GPU
|
28 |
+
torch_dtype=torch.float16, # Reduces memory usage
|
29 |
+
low_cpu_mem_usage=True # Optimized RAM loading
|
30 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
print("✅ Quantized model loaded successfully!")
|
33 |
return model
|
34 |
|
35 |
# Load Tokenizer
|
36 |
+
tokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH, token=HUGGINGFACE_TOKEN, legacy=False)
|
37 |
|
38 |
# Load the model
|
39 |
model = load_quantized_model(MODEL_PATH)
|
|
|
97 |
with torch.no_grad():
|
98 |
outputs = model.generate(
|
99 |
inputs.input_ids,
|
100 |
+
max_length=512,
|
101 |
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
|
102 |
top_p=0.9,
|
103 |
do_sample=True
|