Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import json
|
5 |
-
from transformers import LlamaTokenizer, LlamaForCausalLM
|
6 |
from peft import PeftModel
|
7 |
|
8 |
# Set Hugging Face Token for Authentication
|
@@ -21,14 +21,25 @@ LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
|
21 |
def load_quantized_model(model_path):
|
22 |
print(f"🔄 Loading Quantized Model: {model_path}")
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
print("✅ Quantized model loaded successfully!")
|
34 |
return model
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import json
|
5 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, LlamaConfig
|
6 |
from peft import PeftModel
|
7 |
|
8 |
# Set Hugging Face Token for Authentication
|
|
|
21 |
def load_quantized_model(model_path):
|
22 |
print(f"🔄 Loading Quantized Model: {model_path}")
|
23 |
|
24 |
+
# Load the config manually
|
25 |
+
config = LlamaConfig.from_pretrained(model_path)
|
26 |
+
|
27 |
+
# Initialize model
|
28 |
+
model = LlamaForCausalLM(config)
|
29 |
+
|
30 |
+
# Load the quantized weights manually
|
31 |
+
checkpoint_path = os.path.join(model_path, "consolidated.00.pth")
|
32 |
+
if not os.path.exists(checkpoint_path):
|
33 |
+
raise FileNotFoundError(f"❌ Checkpoint file not found: {checkpoint_path}")
|
34 |
+
|
35 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
36 |
+
|
37 |
+
# Load the state dict into the model
|
38 |
+
model.load_state_dict(state_dict, strict=False)
|
39 |
+
|
40 |
+
# Move model to GPU if available
|
41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
+
model.to(device)
|
43 |
|
44 |
print("✅ Quantized model loaded successfully!")
|
45 |
return model
|