File size: 7,409 Bytes
d43fa94
41928ca
 
 
3ecadea
 
41928ca
79ccf40
 
d43fa94
79ccf40
 
 
 
3ecadea
b94b847
79ccf40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94b847
 
79ccf40
b94b847
 
79ccf40
41928ca
79ccf40
41928ca
b94b847
41928ca
 
 
 
 
b94b847
41928ca
b94b847
41928ca
 
 
 
 
b94b847
41928ca
b94b847
41928ca
b94b847
41928ca
 
79ccf40
41928ca
b94b847
 
 
 
 
 
 
79ccf40
b94b847
 
 
 
 
 
41928ca
 
b94b847
41928ca
79ccf40
41928ca
79ccf40
41928ca
 
 
 
 
79ccf40
41928ca
b94b847
41928ca
79ccf40
b94b847
 
 
 
 
 
 
41928ca
 
 
79ccf40
41928ca
 
 
 
 
 
79ccf40
41928ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b94b847
79ccf40
b94b847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41928ca
 
 
 
 
 
 
 
 
 
 
 
 
b94b847
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import gradio as gr
import torch
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

# Set Hugging Face Token for Authentication
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")  # Ensure this is set in your environment

# Correct model paths (replace with your actual paths)
BASE_MODEL = "meta-llama/Llama-3-1B-Instruct"  # Ensure this is the correct identifier
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"  # Ensure this is correct
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"  # Ensure this is correct

# Function to load Llama model
def load_llama_model(model_name, is_guard=False):
    print(f"Loading model: {model_name}")
    try:
        # Load tokenizer
        tokenizer = AutoTokenizer.from_pretrained(
            model_name,
            use_fast=False,
            token=HUGGINGFACE_TOKEN
        )
        
        # Load model
        model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float32,
            device_map="cpu",  # Ensure it runs on CPU
            token=HUGGINGFACE_TOKEN
        )
        
        # Load QLoRA adapter if applicable
        if not is_guard and "QLORA" in model_name:
            print("Loading QLoRA adapter...")
            model = PeftModel.from_pretrained(
                model,
                model_name,
                token=HUGGINGFACE_TOKEN
            )
            print("Merging LoRA weights...")
            model = model.merge_and_unload()  # Merge LoRA weights for inference
        
        return tokenizer, model
    except Exception as e:
        print(f"Error loading model {model_name}: {e}")
        raise

# Load Llama 3.2 model
tokenizer, model = load_llama_model(QLORA_ADAPTER)

# Load Llama Guard for content moderation
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME, is_guard=True)

# Define Prompt Templates (same as before)
PROMPTS = {
    "project_analysis": """<|begin_of_text|><|prompt|>Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}<|completion|>""",
    
    "code_generation": """<|begin_of_text|><|prompt|>Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation<|completion|>""",

    "risk_analysis": """<|begin_of_text|><|prompt|>Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies<|completion|>"""
}

# Function: Content Moderation using Llama Guard (same as before)
def moderate_input(user_input):
    prompt = f"""<|begin_of_text|><|user|>
Input: {user_input}
Please verify that this input doesn't violate any content policies.
<|assistant|>"""
    
    inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True)
    
    with torch.no_grad():
        outputs = guard_model.generate(
            inputs.input_ids,
            max_length=256,
            temperature=0.1
        )
    
    response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    if "flagged" in response.lower() or "violated" in response.lower() or "policy violation" in response.lower():
        return "⚠️ Content flagged by Llama Guard. Please modify your input."
    return None

# Function: Generate AI responses (same as before)
def generate_response(prompt_type, **kwargs):
    prompt = PROMPTS[prompt_type].format(**kwargs)
    
    moderation_warning = moderate_input(prompt)
    if moderation_warning:
        return moderation_warning

    inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
    
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            max_length=1024,
            temperature=0.7 if prompt_type == "project_analysis" else 0.5,
            top_p=0.9,
            do_sample=True
        )

    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Gradio UI (same as before)
def create_gradio_interface():
    with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
        
        with gr.Tab("Project Setup"):
            project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
            project_output = gr.Textbox(label="Project Analysis", lines=15)
            analyze_btn = gr.Button("Analyze Project")
            analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
        
        with gr.Tab("Code Assistant"):
            code_input = gr.Textbox(label="Feature Description", lines=3)
            lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
            standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
            code_output = gr.Code(label="Generated Code")
            code_btn = gr.Button("Generate Code")
            code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
        
        with gr.Tab("Risk Analysis"):
            risk_input = gr.Textbox(label="Project Plan", lines=5)
            risk_output = gr.JSON(label="Risk Predictions") 
            risk_btn = gr.Button("Predict Risks")
            risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
        
        with gr.Tab("Live Collaboration"):
            gr.Markdown("## Real-time Project Collaboration")
            chat = gr.Chatbot(height=400)
            msg = gr.Textbox(label="Chat with AI PM")
            clear = gr.Button("Clear Chat")
            
            def respond(message, chat_history):
                moderation_warning = moderate_input(message)
                if moderation_warning:
                    chat_history.append((message, moderation_warning))
                    return "", chat_history

                history_text = ""
                for i, (usr, ai) in enumerate(chat_history[-3:]):
                    history_text += f"User: {usr}\nAI: {ai}\n"
                
                prompt = f"""<|begin_of_text|><|prompt|>Project Management Chat:
Context: {message}
Chat History: {history_text}
User: {message}<|completion|>"""
                
                inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
                
                with torch.no_grad():
                    outputs = model.generate(
                        inputs.input_ids,
                        max_length=1024,
                        temperature=0.7,
                        top_p=0.9,
                        do_sample=True
                    )
                
                response = tokenizer.decode(outputs[0], skip_special_tokens=True)
                chat_history.append((message, response))
                return "", chat_history
            
            msg.submit(respond, [msg, chat], [msg, chat])
            clear.click(lambda: None, None, chat, queue=False)

    return demo

# Run Gradio App
if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(share=True)