File size: 7,409 Bytes
d43fa94 41928ca 3ecadea 41928ca 79ccf40 d43fa94 79ccf40 3ecadea b94b847 79ccf40 b94b847 79ccf40 b94b847 79ccf40 41928ca 79ccf40 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca 79ccf40 41928ca b94b847 79ccf40 b94b847 41928ca b94b847 41928ca 79ccf40 41928ca 79ccf40 41928ca 79ccf40 41928ca b94b847 41928ca 79ccf40 b94b847 41928ca 79ccf40 41928ca 79ccf40 41928ca b94b847 79ccf40 b94b847 41928ca b94b847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import os
import gradio as gr
import torch
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Set Hugging Face Token for Authentication
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Ensure this is set in your environment
# Correct model paths (replace with your actual paths)
BASE_MODEL = "meta-llama/Llama-3-1B-Instruct" # Ensure this is the correct identifier
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Ensure this is correct
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
# Function to load Llama model
def load_llama_model(model_name, is_guard=False):
print(f"Loading model: {model_name}")
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=False,
token=HUGGINGFACE_TOKEN
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map="cpu", # Ensure it runs on CPU
token=HUGGINGFACE_TOKEN
)
# Load QLoRA adapter if applicable
if not is_guard and "QLORA" in model_name:
print("Loading QLoRA adapter...")
model = PeftModel.from_pretrained(
model,
model_name,
token=HUGGINGFACE_TOKEN
)
print("Merging LoRA weights...")
model = model.merge_and_unload() # Merge LoRA weights for inference
return tokenizer, model
except Exception as e:
print(f"Error loading model {model_name}: {e}")
raise
# Load Llama 3.2 model
tokenizer, model = load_llama_model(QLORA_ADAPTER)
# Load Llama Guard for content moderation
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME, is_guard=True)
# Define Prompt Templates (same as before)
PROMPTS = {
"project_analysis": """<|begin_of_text|><|prompt|>Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}<|completion|>""",
"code_generation": """<|begin_of_text|><|prompt|>Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation<|completion|>""",
"risk_analysis": """<|begin_of_text|><|prompt|>Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies<|completion|>"""
}
# Function: Content Moderation using Llama Guard (same as before)
def moderate_input(user_input):
prompt = f"""<|begin_of_text|><|user|>
Input: {user_input}
Please verify that this input doesn't violate any content policies.
<|assistant|>"""
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = guard_model.generate(
inputs.input_ids,
max_length=256,
temperature=0.1
)
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "flagged" in response.lower() or "violated" in response.lower() or "policy violation" in response.lower():
return "⚠️ Content flagged by Llama Guard. Please modify your input."
return None
# Function: Generate AI responses (same as before)
def generate_response(prompt_type, **kwargs):
prompt = PROMPTS[prompt_type].format(**kwargs)
moderation_warning = moderate_input(prompt)
if moderation_warning:
return moderation_warning
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
top_p=0.9,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio UI (same as before)
def create_gradio_interface():
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
with gr.Tab("Project Setup"):
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
project_output = gr.Textbox(label="Project Analysis", lines=15)
analyze_btn = gr.Button("Analyze Project")
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
with gr.Tab("Code Assistant"):
code_input = gr.Textbox(label="Feature Description", lines=3)
lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
code_output = gr.Code(label="Generated Code")
code_btn = gr.Button("Generate Code")
code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
with gr.Tab("Risk Analysis"):
risk_input = gr.Textbox(label="Project Plan", lines=5)
risk_output = gr.JSON(label="Risk Predictions")
risk_btn = gr.Button("Predict Risks")
risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
with gr.Tab("Live Collaboration"):
gr.Markdown("## Real-time Project Collaboration")
chat = gr.Chatbot(height=400)
msg = gr.Textbox(label="Chat with AI PM")
clear = gr.Button("Clear Chat")
def respond(message, chat_history):
moderation_warning = moderate_input(message)
if moderation_warning:
chat_history.append((message, moderation_warning))
return "", chat_history
history_text = ""
for i, (usr, ai) in enumerate(chat_history[-3:]):
history_text += f"User: {usr}\nAI: {ai}\n"
prompt = f"""<|begin_of_text|><|prompt|>Project Management Chat:
Context: {message}
Chat History: {history_text}
User: {message}<|completion|>"""
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
chat_history.append((message, response))
return "", chat_history
msg.submit(respond, [msg, chat], [msg, chat])
clear.click(lambda: None, None, chat, queue=False)
return demo
# Run Gradio App
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True) |