# import gradio as gr # import time # 模拟处理耗时 # def process_api(input_text): # # 这里编写实际的后端处理逻辑 # return { # "status": "success", # "result": f"Processed: {input_text.upper()}", # "timestamp": time.time() # } # # 设置API格式为JSON # gr.Interface( # fn=process_api, # inputs="text", # outputs="json", # title="Backend API", # allow_flagging="never" # ).launch() import gradio as gr import spacy from spacy import displacy import pandas as pd import time nlp = spacy.load("en_core_web_md") HTML_WRAPPER = "
{}
" def show_spatial_ent_table(doc): rows = [] for i, ent in enumerate(doc.ents): rows.append(f"{i+1}{ent.text}{ent.label_}") table_html = "" + "".join(rows) + "
IndexEntityLabel
" return table_html def process_api(input_text): doc = nlp(input_text) html_ent = displacy.render(doc, style="ent") html_ent = HTML_WRAPPER.format(html_ent.replace("\n", "")) html_table = show_spatial_ent_table(doc) final_html = html_ent + "
" + html_table return { "data": [{"html": final_html}], "timestamp": time.time() } gr.Interface( fn=process_api, inputs="text", outputs="json", allow_flagging="never", title="Backend API" ).launch()