import gradio as gr import time # 模拟处理耗时 import os import spacy from spacy import displacy import pandas as pd # nlp = spacy.load("en_core_web_md") # def process_api(input_text): # # 这里编写实际的后端处理逻辑 # return { # "status": "success", # # "result": f"Processed: {input_text.upper()}", # "result": f"Processed: {nlp(input_text).to_json()}", # "timestamp": time.time() # } # # 设置API格式为JSON # gr.Interface( # fn=process_api, # inputs="text", # outputs="json", # title="Backend API", # allow_flagging="never" # ).launch() # nlp = spacy.import gradio as gr import time import spacy from spacy.tokens import Span, Doc, Token from spacy import displacy import streamlit as st import pandas as pd from spacy.language import Language import llm_ent_extract import regex_spatial import re colors = {'GPE': "#43c6fc", "LOC": "#fd9720", "RSE":"#a6e22d"} options = {"ents": ['GPE', 'LOC', "RSE"], "colors": colors} HTML_WRAPPER = """
{}
""" BASE_URL = "" model = "" types = "" nlp = spacy.load("en_core_web_md") gpe_selected = 'GPE' loc_selected = 'loc' rse_selected = 'rse' rse_id = "rse_id" def set_selected_entities(doc): global gpe_selected, loc_selected, rse_selected, model ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected] doc.ents = ents return doc def update_entities(doc, entity_texts, replace=True): """ 根据给定的文本内容标注实体,并直接修改 doc.ents。 :param doc: spaCy 解析后的 Doc 对象 :param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别 :param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的 """ new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体 for ent_text, ent_label in entity_texts.items(): start = doc.text.find(ent_text) # 在全文中查找文本位置 if start != -1: start_token = len(doc.text[:start].split()) # 计算起始 token 索引 end_token = start_token + len(ent_text.split()) # 计算结束 token 索引 if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界 new_ent = Span(doc, start_token, end_token, label=ent_label) new_ents.append(new_ent) doc.set_ents(new_ents) # 更新 doc.ents def find_ent_by_regex(doc, sentence, ent, regex): global id if id == "": id = ent.text for match in re.finditer(regex, doc.text): start, end = match.span() if(start>= sentence.start_char and start<= sentence.end_char): span = doc.char_span(start, end) if span is not None: id = span.text +"_"+ id if(start > ent.end_char): ent.end_char = end else: ent.start_char = start return ent return ent def set_extension(): Span.set_extension(rse_id, default="", force=True) Doc.set_extension(rse_id, default="", force=True) Token.set_extension(rse_id, default="", force=True) def get_level1(doc, sentence, ent): return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex()) def get_level2(doc, sentence, ent): return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex()) def get_level3(doc, sentence, ent): return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex()) def get_relative_entity(doc, sentence, ent): global id id = "" rel_entity = get_level1(doc, sentence, ent) # print(1111 ,rel_entity) rel_entity = get_level2(doc, sentence, rel_entity) # print(2222 ,rel_entity) rel_entity = get_level3(doc, sentence, rel_entity) # print(3333 ,rel_entity) if("_" in id): rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE") rel_entity._.rse_id = id # print(id, 'idid') # print(rel_entity._.rse_id, '._._') return rel_entity rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_) rel_entity._.rse_id = id # print(4444 ,rel_entity) return rel_entity @Language.component("spatial_pipeline") def get_spatial_ent(doc): set_extension() new_ents = [] # ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] # 筛选出ase # LLM 输出 # GPE = '[###Pyrmont###, ###Glebe###]' # LLM 输出的实体 GPE = llm_ent_extract.extract_GPE(doc.text) # LLM 输出的实体 print(doc.text, 'llmin') print(GPE, 'llout') GPE = llm_ent_extract.extract(GPE, 'GPE') print(GPE, 'llmout2') update_entities(doc, GPE, True) ents = doc.ents print(ents, 'eee') end = None for ent in ents: if ent.end != len(doc): next_token = doc[ent.end] if end is not None: start = end else: start = ent.sent.start if next_token.text.lower() in regex_spatial.get_keywords(): end = next_token.i else: end = ent.end else: start = ent.sent.start end = ent.end # print(doc, '//',start, '//', end, 999888) # print(doc[start],'//', doc[end]) # print(ents, 999) rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent) # print(doc.ents[0]._.rse_id, '._._2') # print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id) new_ents.append(rsi_ent) doc.ents = new_ents return doc def extract_spatial_entities(text): nlp.add_pipe("spatial_pipeline", after="ner") doc = nlp(text) # 分句处理 sent_ents = [] sent_texts = [] sent_rse_id = [] offset = 0 # 记录当前 token 偏移量 sent_start_positions = [0] # 记录句子信息 doc_copy = doc.copy() # 用于展示方程组合 for sent in doc.sents: sent_doc = nlp(sent.text) # 逐句处理 sent_doc = set_selected_entities(sent_doc) # 这里处理实体 sent_texts.append(sent_doc.text) for ent in sent_doc.ents: sent_rse_id.append(ent._.rse_id) # **调整每个实体的索引,使其匹配完整文本** for ent in sent_doc.ents: new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_) sent_ents.append(new_ent) offset += len(sent) # 更新偏移量 sent_start_positions.append(sent_start_positions[-1] + len(sent)) # 记录句子起点 # **创建新 Doc** final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc]) for i in sent_start_positions: # 手动标记句子起始点 if i < len(final_doc): final_doc[i].is_sent_start = True # **设置实体** final_doc.set_ents(sent_ents) for i in range(len(sent_rse_id)): final_doc.ents[i]._.rse_id = sent_rse_id[i] doc = final_doc return doc.to_json() def process_api(input_text): # 这里编写实际的后端处理逻辑 return { "status": "success", # "result": f"Processed: {input_text.upper()}", # "result": f"Processed: {nlp(input_text).to_json()}", "result": f"Processed: {extract_spatial_entities(input_text)}", "timestamp": time.time() } # 设置API格式为JSON gr.Interface( fn=process_api, inputs="text", outputs="json", title="Backend API", allow_flagging="never" ).launch()