Spaces:
Build error
Build error
File size: 7,895 Bytes
4c425e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 2 12:45:21 2022
@author: syed
"""
import math
import re
import regex_spatial
import quantities as pq
from math import radians, cos, sin, asin, sqrt
import quantities as pq
def get_kilometers(d, unit):
q = float(d) * pq.CompoundUnit(unit)
q.units = pq.km
return q.magnitude
def ConvertToRadian(input):
return input * math.pi / 180
def get_level1(ent):
level_1 = re.search(regex_spatial.get_level1_regex(), ent)
if level_1 is not None:
return level_1.group()
return None
def get_level2(ent):
level_2 = re.search(regex_spatial.get_level2_regex(), ent)
if level_2 is not None:
return level_2.group()
return None
def get_level3(ent):
level_3 = re.search(regex_spatial.get_level3_regex(), ent)
if level_3 is not None:
return level_3.group()
return None
def get_ase(ent):
abs_sp = ent.split("_")
return abs_sp[len(abs_sp)-1]
def get_ent(ent):
return get_ase(ent), get_level1(ent), get_level2(ent), get_level3(ent)
def get_centroid(coordinates, centroid, mini, maxi):
average = (mini + maxi)/2
diff = []
ind = 0
for p in coordinates:
diff.append(abs( p[2] - average))
ind = diff.index(min(diff))
return midpoint(centroid[0], centroid[1], coordinates[ind][0], coordinates[ind][1], average)
def calculateArea(coordinates):
area = 0
if (len(coordinates) > 2):
i = 0
for i in range(len(coordinates) - 1):
p1 = coordinates[i]
p2 = coordinates[i + 1]
area += math.radians(p2[0] - p1[0]) * (2 + math.sin(ConvertToRadian(p1[1])) + math.sin(math.radians(p2[0])))
area = area * 6378137 * 6378137 / 1000000
area = abs(round(area, 2)) + 2
return area
def get_midmid_point(centroid, point1, point2, is_midmid):
mid1 = midpoint(centroid[0], centroid[1],
point1[0], point1[1]
, point1[2])
mid2 = midpoint(centroid[0], centroid[1],
point2[0], point2[1],
point2[2])
midmid1 = midpoint(centroid[0], centroid[1],
mid1[0], mid1[1]
, mid1[2])
midmid2 = midpoint(centroid[0], centroid[1],
mid2[0], mid2[1],
mid2[2])
if is_midmid:
return midmid1, midmid2
else:
return mid1, mid2
def getPointByDistanceAngle(lat, ln, angle, distanceInKm):
R = 6378.1 #Radius of the Earth
brng = angle * math.pi /180 #Bearing is 90 degrees converted to radians.
d = distanceInKm #Distance in km
#lat2 52.20444 - the lat result I'm hoping for
#lon2 0.36056 - the long result I'm hoping for.
lat1 = math.radians(lat) #Current lat point converted to radians
lon1 = math.radians(ln) #Current long point converted to radians
lat2 = math.asin( math.sin(lat1)*math.cos(d/R) +
math.cos(lat1)*math.sin(d/R)*math.cos(brng))
lon2 = lon1 + math.atan2(math.sin(brng)*math.sin(d/R)*math.cos(lat1),
math.cos(d/R)-math.sin(lat1)*math.sin(lat2))
lat2 = math.degrees(lat2)
lon2 = math.degrees(lon2)
return [lon2, lat2, angle]
def midpoint(x1, y1, x2, y2, angle):
lonA = math.radians(y1)
lonB = math.radians(y2)
latA = math.radians(x1)
latB = math.radians(x2)
dLon = lonB - lonA
Bx = math.cos(latB) * math.cos(dLon)
By = math.cos(latB) * math.sin(dLon)
latC = math.atan2(math.sin(latA) + math.sin(latB),
math.sqrt((math.cos(latA) + Bx) * (math.cos(latA) + Bx) + By * By))
lonC = lonA + math.atan2(By, math.cos(latA) + Bx)
lonC = (lonC + 3 * math.pi) % (2 * math.pi) - math.pi
latitude = round(math.degrees(latC), 8)
longitude = round(math.degrees(lonC),8)
return [latitude, longitude, angle]
def midpoint(y1, x1, y2, x2, angle):
lonA = math.radians(y1)
lonB = math.radians(y2)
latA = math.radians(x1)
latB = math.radians(x2)
dLon = lonB - lonA
Bx = math.cos(latB) * math.cos(dLon)
By = math.cos(latB) * math.sin(dLon)
latC = math.atan2(math.sin(latA) + math.sin(latB),
math.sqrt((math.cos(latA) + Bx) * (math.cos(latA) + Bx) + By * By))
lonC = lonA + math.atan2(By, math.cos(latA) + Bx)
lonC = (lonC + 3 * math.pi) % (2 * math.pi) - math.pi
latitude = round(math.degrees(latC), 8)
longitude = round(math.degrees(lonC) ,8)
print([longitude, latitude, angle], 'midmid')
return [longitude, latitude, angle
]
def calculate_bearing(pointA, pointB):
if (type(pointA) != tuple) or (type(pointB) != tuple):
return 400
if (type(pointB[0]) != float) or (type(pointB[0]) != float):
return 400
lat1 = math.radians(pointA[0])
lat2 = math.radians(pointB[0])
diffLong = math.radians(pointB[1] - pointA[1])
x = math.sin(diffLong) * math.cos(lat2)
y = math.cos(lat1) * math.sin(lat2) - (math.sin(lat1)
* math.cos(lat2) * math.cos(diffLong))
initial_bearing = math.atan2(x, y)
initial_bearing = math.degrees(initial_bearing)
compass_bearing = (initial_bearing + 360) % 360
return compass_bearing
def getPointByDistanceAngle(lat, ln, angle, distance, unit):
#distanceInKm = distance
R = 6378.1 #Radius of the Earth
brng = float(angle) * math.pi /180 #Bearing is 90 degrees converted to radians.
d = get_kilometers(distance, unit) #Distance in km
lat1 = math.radians(lat) #Current lat point converted to radians
lon1 = math.radians(ln) #Current long point converted to radians
lat2 = math.asin( math.sin(lat1)*math.cos(d/R) +
math.cos(lat1)*math.sin(d/R)*math.cos(brng))
lon2 = lon1 + math.atan2(math.sin(brng)*math.sin(d/R)*math.cos(lat1),
math.cos(d/R)-math.sin(lat1)*math.sin(lat2))
lat2 = math.degrees(lat2)
lon2 = math.degrees(lon2)
return (round(lon2,8), round(lat2,8), angle)
def calculatePointByDistance(lat, ln, angle, distance, unit):
coff = 100/(6378*1.56)
kms = get_kilometers(distance, unit)
d = kms * coff
angle_x = math.cos( angle ) # * math.pi/180
angle_y = math.sin( angle) # * math.pi/180
lat_new = lat + (d * angle_x)
ln_new = ln + (d * angle_y)
return (round(ln_new,8), round(lat_new,8), angle)
def pointByAngle(lat, ln, angle, distance, unit):
R = 6378.1 #Radius of the Earth
brng = angle * math.pi /180 #Bearing is 90 degrees converted to radians.
d = get_kilometers(distance, unit) #Distance in km
#lat2 52.20444 - the lat result I'm hoping for
#lon2 0.36056 - the long result I'm hoping for.
lat1 = math.radians(lat) #Current lat point converted to radians
lon1 = math.radians(ln) #Current long point converted to radians
lat2 = math.asin( math.sin(lat1)*math.cos(d/R) +
math.cos(lat1)*math.sin(d/R)*math.cos(brng))
lon2 = lon1 + math.atan2(math.sin(brng)*math.sin(d/R)*math.cos(lat1),
math.cos(d/R)-math.sin(lat1)*math.sin(lat2))
lat2 = math.degrees(lat2)
lon2 = math.degrees(lon2)
return (lon2, lat2, angle)
def getPointByDistance(lat, ln, angle, distance, unit):
kms = get_kilometers(distance, unit)
coef = kms / 111.32
new_lat = lat + coef
new_long = ln + coef / math.cos(lat * 0.01745)
return (round(new_lat,8), round(new_long,8), angle)
def haversine(lon1, lat1, lon2, lat2):
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
km = 6371* c
return km
|