File size: 7,950 Bytes
4c425e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from spacy.tokens import Span
from spacy.tokens import Doc
from spacy.tokens import Token
import regex_spatial
from spacy.language import Language
import re
from utils import llm_ent_extract

id =""
rse_id = "rse_id"
def set_extension():
     Span.set_extension(rse_id, default = "",force = True)
     Doc.set_extension(rse_id, default = "",force = True)
     Token.set_extension(rse_id, default = "",force = True)
     
def get_level1(doc, sentence, ent):
    return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex())

def get_level2(doc, sentence, ent):
  return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex()) 

def get_level3(doc, sentence, ent):
  return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex())


def find_ent_by_regex(doc, sentence, ent, regex):
  global id

  if id == "":
      id = ent.text
  for match in re.finditer(regex, doc.text):
        start, end = match.span()
        if(start>= sentence.start_char and start<= sentence.end_char):
          span = doc.char_span(start, end)
          if span is not None:
            id = span.text +"_"+ id
            if(start > ent.end_char):
              ent.end_char = end
            else:
              ent.start_char = start         

          return ent

  return ent


def update_entities(doc, entity_texts, replace=True):
    """
    根据给定的文本内容标注实体,并直接修改 doc.ents。

    :param doc: spaCy 解析后的 Doc 对象
    :param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别
    :param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的
    """
    new_ents = list(doc.ents) if not replace else []  # 如果 replace=False,保留已有实体

    for ent_text, ent_label in entity_texts.items():
        start = doc.text.find(ent_text)  # 在全文中查找文本位置
        if start != -1:
            start_token = len(doc.text[:start].split())  # 计算起始 token 索引
            end_token = start_token + len(ent_text.split())  # 计算结束 token 索引

            if start_token < len(doc) and end_token <= len(doc):  # 确保索引不越界
                new_ent = Span(doc, start_token, end_token, label=ent_label)
                new_ents.append(new_ent)

    doc.set_ents(new_ents)  # 更新 doc.ents


def get_relative_entity(doc, sentence, ent):
  global id

  id = ""
  rel_entity = get_level1(doc, sentence, ent)
  # print(1111 ,rel_entity)
  rel_entity = get_level2(doc, sentence, rel_entity)
  # print(2222 ,rel_entity)
  rel_entity = get_level3(doc, sentence, rel_entity)
  # print(3333 ,rel_entity)

  if("_" in id):
    rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE")
    rel_entity._.rse_id = id

    # print(id, 'idid')
    # print(rel_entity._.rse_id, '._._')

    return rel_entity
  rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_)
  rel_entity._.rse_id = id
  # print(4444 ,rel_entity)
  return rel_entity

@Language.component("spatial_pipeline")
def get_spatial_ent(doc):
  set_extension()
  new_ents = []
  # ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"]        # 筛选出ase


  # LLM 输出
  # GPE = '[###Pyrmont###, ###Glebe###]'                       # LLM 输出的实体
  GPE = llm_ent_extract.extract_GPE(doc.text)                       # LLM 输出的实体
  print(doc.text, 'llmin')
  print(GPE, 'llout')

  GPE = llm_ent_extract.extract(GPE, 'GPE')
  print(GPE, 'llmout2')
  update_entities(doc, GPE, True)
  ents = doc.ents
  print(ents, 'eee')
  # print(doc, 'ddd')
  # print(ents, 'ddd')
  # GPE = llm_ent_extract.extract(llm_ent_extract.extract_GPE(doc.text), 'gpe')
  # update_entities(doc, GPE)
  # LLM 输出完毕


  # print(doc.ents, 111)
  # print(doc.ents[2], 222)
  # print(type(doc.ents[2]), 222)
  # print(doc.ents[2].label_, 333)
  # print('----------')
  # doc.ents[2] = 'pp'
  # print(doc.ents[2], 111)
  # print(doc.ents[2].label_, 222)
  # print(type(doc.ents), 333)
  end = None
  for ent in ents:

    if ent.end != len(doc):
        next_token = doc[ent.end]
        if end is not None:
          start = end
        else:
          start = ent.sent.start
        if next_token.text.lower() in regex_spatial.get_keywords():
          end = next_token.i
        else:
          end = ent.end

    else:
        start = ent.sent.start
        end = ent.end

    # print(doc, '//',start, '//', end, 999888)
    # print(doc[start],'//', doc[end])
    # print(ents, 999)


    rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent)
    # print(doc.ents[0]._.rse_id, '._._2')


    # print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id)
    new_ents.append(rsi_ent)

  doc.ents = new_ents
  return doc

# def update_doc_ents(doc, new_dict):
#     """
#     更新 doc.ents, 将新的实体文本和标签添加到 doc 中。
#
#     参数:
#     - doc: spaCy 的 Doc 对象
#     - new_dict: 一个字典,键是实体文本,值是标签
#     """
#     modified_ents = []
#
#     # 遍历字典中的实体文本和标签
#     for ent_text, label in new_dict.items():
#         # 将实体文本拆分成单词
#         ent_words = ent_text.split()
#
#         # 遍历 doc 中的 token 来查找第一个单词
#         start = None
#         for i in range(len(doc)):
#             # 如果当前 token 和实体的第一个单词匹配,确定 start
#             if doc[i].text == ent_words[0]:
#                 start = i
#                 # 然后检查后续的单词是否都匹配
#                 end = start + len(ent_words)  # 计算 end 为 start + 单词数
#                 if all(doc[start + j].text == ent_words[j] for j in range(len(ent_words))):
#                     # 创建 Span 对象
#                     new_ent = Span(doc, start, end, label=label)
#                     modified_ents.append(new_ent)
#                     break  # 找到匹配后跳出循环
#
#     # 使用 doc.set_ents() 更新 doc.ents
#     doc.set_ents(modified_ents)
#
#
# # def llm_extract(doc, model):
#
# def split_doc_into_sentences(doc):
#     """
#     将 doc 的文本按句子分割,并返回每个句子的字符串列表。
#     """
#     sentence_list = [sent.text.strip() for sent in doc.sents]
#     return sentence_list
#
#
# @Language.component("spatial_pipeline")
# def get_spatial_ent(doc):
#
#     set_extension()
#
#     split_sent = split_doc_into_sentences(doc)
#     for i in range(len(split_sent)):
#         gpe_dict = llm_ent_extract.extract_GPE(split_sent[i])
#         loc_dict = llm_ent_extract.extract_LOC(split_sent[i])
#         new_dict = gpe_dict|loc_dict
#
#
#     print(gpe_dict, '111')
#     print(loc_dict)
#     print(new_dict)
#     # new_dict = {'pp': 'ORG', 'France': 'GPE', 'Paris': 'GPE'}
#
#
#     # 调用新的函数更新 doc 的实体
#     update_doc_ents(doc, new_dict)
#
#     # 继续处理 doc.ents
#     ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"]
#     print(ents[1].label_)
#
#     end = None
#     new_ents = []
#
#     for ent in ents:
#         if ent.end != len(doc):
#             next_token = doc[ent.end + 1]
#             if end is not None:
#                 start = end
#             else:
#                 start = ent.sent.start
#             if next_token.text.lower() in regex_spatial.get_keywords():
#                 end = next_token.i
#             else:
#                 end = ent.end
#         else:
#             start = ent.sent.start
#             end = ent.end
#
#         # 调用 get_relative_entity 来获得新的实体信息
#         rsi_ent = get_relative_entity(doc, Span(doc, start, end), ent)
#
#         # 将处理后的实体添加到新的实体列表中
#         new_ents.append(rsi_ent)
#
#     doc.ents = new_ents  # 更新 doc.ents
#     print(new_ents, '111222')
#
#     return doc