from spacy.tokens import Span from spacy.tokens import Doc from spacy.tokens import Token import regex_spatial from spacy.language import Language import re from utils import llm_ent_extract id ="" rse_id = "rse_id" def set_extension(): Span.set_extension(rse_id, default = "",force = True) Doc.set_extension(rse_id, default = "",force = True) Token.set_extension(rse_id, default = "",force = True) def get_level1(doc, sentence, ent): return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex()) def get_level2(doc, sentence, ent): return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex()) def get_level3(doc, sentence, ent): return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex()) def find_ent_by_regex(doc, sentence, ent, regex): global id if id == "": id = ent.text for match in re.finditer(regex, doc.text): start, end = match.span() if(start>= sentence.start_char and start<= sentence.end_char): span = doc.char_span(start, end) if span is not None: id = span.text +"_"+ id if(start > ent.end_char): ent.end_char = end else: ent.start_char = start return ent return ent def update_entities(doc, entity_texts, replace=True): """ 根据给定的文本内容标注实体,并直接修改 doc.ents。 :param doc: spaCy 解析后的 Doc 对象 :param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别 :param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的 """ new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体 for ent_text, ent_label in entity_texts.items(): start = doc.text.find(ent_text) # 在全文中查找文本位置 if start != -1: start_token = len(doc.text[:start].split()) # 计算起始 token 索引 end_token = start_token + len(ent_text.split()) # 计算结束 token 索引 if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界 new_ent = Span(doc, start_token, end_token, label=ent_label) new_ents.append(new_ent) doc.set_ents(new_ents) # 更新 doc.ents def get_relative_entity(doc, sentence, ent): global id id = "" rel_entity = get_level1(doc, sentence, ent) # print(1111 ,rel_entity) rel_entity = get_level2(doc, sentence, rel_entity) # print(2222 ,rel_entity) rel_entity = get_level3(doc, sentence, rel_entity) # print(3333 ,rel_entity) if("_" in id): rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE") rel_entity._.rse_id = id # print(id, 'idid') # print(rel_entity._.rse_id, '._._') return rel_entity rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_) rel_entity._.rse_id = id # print(4444 ,rel_entity) return rel_entity @Language.component("spatial_pipeline") def get_spatial_ent(doc): set_extension() new_ents = [] # ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] # 筛选出ase # LLM 输出 # GPE = '[###Pyrmont###, ###Glebe###]' # LLM 输出的实体 GPE = llm_ent_extract.extract_GPE(doc.text) # LLM 输出的实体 print(doc.text, 'llmin') print(GPE, 'llout') GPE = llm_ent_extract.extract(GPE, 'GPE') print(GPE, 'llmout2') update_entities(doc, GPE, True) ents = doc.ents print(ents, 'eee') # print(doc, 'ddd') # print(ents, 'ddd') # GPE = llm_ent_extract.extract(llm_ent_extract.extract_GPE(doc.text), 'gpe') # update_entities(doc, GPE) # LLM 输出完毕 # print(doc.ents, 111) # print(doc.ents[2], 222) # print(type(doc.ents[2]), 222) # print(doc.ents[2].label_, 333) # print('----------') # doc.ents[2] = 'pp' # print(doc.ents[2], 111) # print(doc.ents[2].label_, 222) # print(type(doc.ents), 333) end = None for ent in ents: if ent.end != len(doc): next_token = doc[ent.end] if end is not None: start = end else: start = ent.sent.start if next_token.text.lower() in regex_spatial.get_keywords(): end = next_token.i else: end = ent.end else: start = ent.sent.start end = ent.end # print(doc, '//',start, '//', end, 999888) # print(doc[start],'//', doc[end]) # print(ents, 999) rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent) # print(doc.ents[0]._.rse_id, '._._2') # print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id) new_ents.append(rsi_ent) doc.ents = new_ents return doc # def update_doc_ents(doc, new_dict): # """ # 更新 doc.ents, 将新的实体文本和标签添加到 doc 中。 # # 参数: # - doc: spaCy 的 Doc 对象 # - new_dict: 一个字典,键是实体文本,值是标签 # """ # modified_ents = [] # # # 遍历字典中的实体文本和标签 # for ent_text, label in new_dict.items(): # # 将实体文本拆分成单词 # ent_words = ent_text.split() # # # 遍历 doc 中的 token 来查找第一个单词 # start = None # for i in range(len(doc)): # # 如果当前 token 和实体的第一个单词匹配,确定 start # if doc[i].text == ent_words[0]: # start = i # # 然后检查后续的单词是否都匹配 # end = start + len(ent_words) # 计算 end 为 start + 单词数 # if all(doc[start + j].text == ent_words[j] for j in range(len(ent_words))): # # 创建 Span 对象 # new_ent = Span(doc, start, end, label=label) # modified_ents.append(new_ent) # break # 找到匹配后跳出循环 # # # 使用 doc.set_ents() 更新 doc.ents # doc.set_ents(modified_ents) # # # # def llm_extract(doc, model): # # def split_doc_into_sentences(doc): # """ # 将 doc 的文本按句子分割,并返回每个句子的字符串列表。 # """ # sentence_list = [sent.text.strip() for sent in doc.sents] # return sentence_list # # # @Language.component("spatial_pipeline") # def get_spatial_ent(doc): # # set_extension() # # split_sent = split_doc_into_sentences(doc) # for i in range(len(split_sent)): # gpe_dict = llm_ent_extract.extract_GPE(split_sent[i]) # loc_dict = llm_ent_extract.extract_LOC(split_sent[i]) # new_dict = gpe_dict|loc_dict # # # print(gpe_dict, '111') # print(loc_dict) # print(new_dict) # # new_dict = {'pp': 'ORG', 'France': 'GPE', 'Paris': 'GPE'} # # # # 调用新的函数更新 doc 的实体 # update_doc_ents(doc, new_dict) # # # 继续处理 doc.ents # ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] # print(ents[1].label_) # # end = None # new_ents = [] # # for ent in ents: # if ent.end != len(doc): # next_token = doc[ent.end + 1] # if end is not None: # start = end # else: # start = ent.sent.start # if next_token.text.lower() in regex_spatial.get_keywords(): # end = next_token.i # else: # end = ent.end # else: # start = ent.sent.start # end = ent.end # # # 调用 get_relative_entity 来获得新的实体信息 # rsi_ent = get_relative_entity(doc, Span(doc, start, end), ent) # # # 将处理后的实体添加到新的实体列表中 # new_ents.append(rsi_ent) # # doc.ents = new_ents # 更新 doc.ents # print(new_ents, '111222') # # return doc