Spaces:
Runtime error
Runtime error
# import requests | |
# import urllib3 | |
# import json | |
# from utils import geoutil | |
# import regex_spatial | |
# from shapely.geometry import Polygon, MultiPoint, LineString, Point, mapping | |
# import re | |
# import geopandas as gpd | |
# from geocoder import geo_level1 | |
# from openai import OpenAI | |
# import numpy as np | |
# | |
# client = OpenAI( | |
# api_key='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' | |
# ) | |
# | |
# | |
# model = "gpt-4o" | |
# | |
# north = ["north", "N'", "North", "NORTH"] | |
# south = ["south", "S'", "South", "SOUTH"] | |
# east = ["east", "E'", "East", "EAST"] | |
# west = ["west", "W'", "West", "WEST"] | |
# northeast = ["north-east", "NE'", "north east", "NORTH-EAST", "North East", "NORTH EAST"] | |
# southeast = ["south-east", "SE'", "south east", "SOUTH-EAST", "South East", "SOUTH EAST"] | |
# northwest = ["north-west", "NW'", "north west", "NORTH-WEST", "North West", "NORTH WEST"] | |
# southwest = ["south-west", "SW'", "south west", "SOUTH-WEST", "South West", "SOUTH WEST"] | |
# center = ["center","central", "downtown","midtown"] | |
# # | |
# # | |
# # def get_directional_coordinates(coordinates, direction, centroid, minimum, maximum, is_midmid): | |
# # direction_coordinates = get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum) | |
# # midmid1, midmid2 = geoutil.get_midmid_point(centroid, direction_coordinates[0], direction_coordinates[-1], | |
# # is_midmid) | |
# # if direction in west: | |
# # maxi = max(p[2] for p in direction_coordinates) | |
# # mini = min(p[2] for p in direction_coordinates) | |
# # index_mini = 0 | |
# # index_maxi = 0 | |
# # for idx, p in enumerate(direction_coordinates): | |
# # if p[2] == mini: | |
# # index_mini = idx | |
# # if p[2] == maxi: | |
# # index_maxi = idx | |
# # | |
# # direction_coordinates.insert(index_maxi + 1, midmid2) | |
# # direction_coordinates.insert(index_mini + 1, midmid1) | |
# # else: | |
# # direction_coordinates.append(midmid2) | |
# # direction_coordinates.append(midmid1) | |
# # | |
# # return direction_coordinates, midmid1, midmid2 | |
# # | |
# # | |
# # def get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum): | |
# # direction_coordinates = [] | |
# # for p in coordinates: | |
# # if direction in east: | |
# # if p[2] >= minimum or p[2] <= maximum: | |
# # direction_coordinates.append(p) | |
# # | |
# # else: | |
# # if p[2] >= minimum and p[2] <= maximum: | |
# # direction_coordinates.append(p) | |
# # return direction_coordinates | |
# # | |
# # | |
# # def get_directional_coordinates_by_angle(coordinates, direction, minimum, maximum): | |
# # direction_coordinates = [] | |
# # for p in coordinates: | |
# # if direction in east: | |
# # if p[2] >= minimum or p[2] <= maximum: | |
# # direction_coordinates.append(p) | |
# # | |
# # else: | |
# # if p[2] >= minimum and p[2] <= maximum: | |
# # direction_coordinates.append(p) | |
# # return direction_coordinates | |
# # | |
# # | |
# # def get_central(coordinates, centroid, direction, is_midmid): | |
# # n_min_max = get_min_max("north") | |
# # n_coordinates = get_directional_coordinates_by_angle(coordinates, "north", n_min_max[0], n_min_max[1]) | |
# # n_mid1, n_mid2 = geoutil.get_midmid_point(centroid, n_coordinates[0], n_coordinates[-1], is_midmid) | |
# # | |
# # ne_min_max = get_min_max("north east") | |
# # ne_coordinates = get_directional_coordinates_by_angle(coordinates, "north east", ne_min_max[0], ne_min_max[1]) | |
# # ne_mid1, ne_mid2 = geoutil.get_midmid_point(centroid, ne_coordinates[0], ne_coordinates[-1], is_midmid) | |
# # | |
# # e_min_max = get_min_max("east") | |
# # e_coordinates = get_directional_coordinates_by_angle(coordinates, "east", e_min_max[0], e_min_max[1]) | |
# # e_mid1, e_mid2 = geoutil.get_midmid_point(centroid, e_coordinates[0], e_coordinates[-1], is_midmid) | |
# # | |
# # se_min_max = get_min_max("south east") | |
# # se_coordinates = get_directional_coordinates_by_angle(coordinates, "south east", se_min_max[0], se_min_max[1]) | |
# # se_mid1, se_mid2 = geoutil.get_midmid_point(centroid, se_coordinates[0], se_coordinates[-1], is_midmid) | |
# # | |
# # s_min_max = get_min_max("south") | |
# # s_coordinates = get_directional_coordinates_by_angle(coordinates, "south", s_min_max[0], s_min_max[1]) | |
# # s_mid1, s_mid2 = geoutil.get_midmid_point(centroid, s_coordinates[0], s_coordinates[-1], is_midmid) | |
# # | |
# # sw_min_max = get_min_max("south west") | |
# # sw_coordinates = get_directional_coordinates_by_angle(coordinates, "south west", sw_min_max[0], sw_min_max[1]) | |
# # sw_mid1, sw_mid2 = geoutil.get_midmid_point(centroid, sw_coordinates[0], sw_coordinates[-1], is_midmid) | |
# # | |
# # w_min_max = get_min_max("west") | |
# # w_coordinates = get_directional_coordinates_by_angle(coordinates, "west", w_min_max[0], w_min_max[1]) | |
# # w_mid1, w_mid2 = geoutil.get_midmid_point(centroid, w_coordinates[0], w_coordinates[-1], is_midmid) | |
# # | |
# # nw_min_max = get_min_max("north west") | |
# # nw_coordinates = get_directional_coordinates_by_angle(coordinates, "north west", nw_min_max[0], nw_min_max[1]) | |
# # nw_mid1, nw_mid2 = geoutil.get_midmid_point(centroid, nw_coordinates[0], nw_coordinates[-1], is_midmid) | |
# # | |
# # central_coordindates = [e_mid1, e_mid2, ne_mid1, ne_mid2, n_mid1, n_mid2, | |
# # nw_mid1, nw_mid2, w_mid1, w_mid2, sw_mid1, sw_mid2, | |
# # s_mid1, s_mid2, se_mid1, se_mid2] | |
# # return central_coordindates | |
# # | |
# # | |
# # def get_min_max(direction): | |
# # regex = regex_spatial.get_directional_regex() | |
# # direction_list = regex.split("|") | |
# # if direction in direction_list: | |
# # if direction in east: | |
# # return (337, 22) | |
# # if direction in northeast: | |
# # return (22, 67) | |
# # if direction in north: | |
# # return (67, 112) | |
# # if direction in northwest: | |
# # return (112, 157) | |
# # if direction in west: | |
# # return (157, 202) | |
# # if direction in southwest: | |
# # return (202, 247) | |
# # if direction in south: | |
# # return (247, 292) | |
# # if direction in southeast: | |
# # return (292, 337) | |
# # | |
# # return None | |
# # def get_level1_coordinates(coordinates, centroid, direction, is_midmid): | |
# # min_max = get_min_max(direction) | |
# # if min_max is not None: | |
# # coordinates, mid1, mid2 = get_directional_coordinates(coordinates, direction, centroid, min_max[0], min_max[1], is_midmid) | |
# # return coordinates, centroid, mid1, mid2 | |
# # elif direction.lower() in center: | |
# # return get_central(coordinates, centroid, direction, is_midmid), centroid, None, None | |
# # else: | |
# # return coordinates, centroid, None, None | |
# def to_standard_2d_list(data): | |
# arr = np.array(data) | |
# | |
# # 强制变成一维后 reshape,前提是元素总数是2的倍数 | |
# flat = arr.flatten() | |
# if flat.size % 2 != 0: | |
# raise ValueError("元素个数不是2的倍数,不能 reshape 成 [N, 2] 格式") | |
# | |
# return flat.reshape(-1, 2).tolist() | |
# | |
# | |
# def get_geojson(ent, arr, centroid): | |
# poly_json = {} | |
# poly_json['type'] = 'FeatureCollection' | |
# poly_json['features'] = [] | |
# coordinates= [] | |
# coordinates.append(arr) | |
# poly_json['features'].append({ | |
# 'type':'Feature', | |
# 'id': ent, | |
# 'properties': { | |
# 'centroid': centroid | |
# }, | |
# 'geometry': { | |
# 'type':'Polygon', | |
# 'coordinates': coordinates | |
# } | |
# }) | |
# return poly_json | |
# | |
# | |
# def get_coordinates(ent): | |
# request_url = 'https://nominatim.openstreetmap.org/search.php?q= ' +ent +'&polygon_geojson=1&accept-language=en&format=jsonv2' | |
# headers = { | |
# "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15" | |
# } | |
# page = requests.get(request_url, headers=headers, verify=False) | |
# json_content = json.loads(page.content) | |
# all_coordinates = json_content[0]['geojson']['coordinates'][0] | |
# centroid = (float(json_content[0]['lon']), float(json_content[0]['lat'])) | |
# for p in all_coordinates: | |
# p2 = (p[0], p[1]) | |
# angle = geoutil.calculate_bearing(centroid, p2) | |
# p.append(angle) | |
# | |
# geojson = get_geojson(ent, all_coordinates, centroid) | |
# | |
# return geojson['features'][0]['geometry']['coordinates'][0], geojson['features'][0]['properties']['centroid'] | |
# | |
# # def geojson(ent): | |
# # request_url = 'https://nominatim.openstreetmap.org/search.php?q= ' +ent +'&polygon_geojson=1&accept-language=en&format=jsonv2' | |
# # headers = { | |
# # "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15" | |
# # } | |
# # page = requests.get(request_url, headers=headers, verify=False) | |
# # json_content = json.loads(page.content) | |
# # all_coordinates = json_content[0]['geojson']['coordinates'][0] | |
# # centroid = (float(json_content[0]['lon']), float(json_content[0]['lat'])) | |
# # for p in all_coordinates: | |
# # p2 = (p[0], p[1]) | |
# # angle = geoutil.calculate_bearing(centroid, p2) | |
# # p.append(angle) | |
# # | |
# # geojson = get_geojson(ent, all_coordinates, centroid) | |
# # | |
# # return geojson | |
# | |
# | |
# def get_coordinates(location): | |
# request_url = f'https://nominatim.openstreetmap.org/search.php?q={location}&polygon_geojson=1&accept-language=en&format=jsonv2' | |
# | |
# print(request_url) | |
# headers = {"User-Agent": "Mozilla/5.0"} | |
# response = requests.get(request_url, headers=headers, verify=False) | |
# json_content = json.loads(response.content) | |
# # print(json_content) | |
# if json_content[0]['geojson']['type'] == 'Polygon': | |
# coordinates = json_content[0]['geojson']['coordinates'][0] | |
# elif json_content[0]['geojson']['type'] == 'Point': | |
# coordinates = json_content[0]['geojson']['coordinates'] | |
# else: | |
# print(json_content[0]['geojson']['type']) | |
# centroid = (float(json_content[0]['lon']), float(json_content[0]['lat'])) | |
# return (coordinates, centroid) | |
# | |
# | |
# # level3 | |
# def get_directional_coordinates_by_angle(coordinates, centroid, direction, minimum, maximum): | |
# # minimum = 157 | |
# # maximum = 202 | |
# | |
# direction_coordinates = [] | |
# for p in coordinates: | |
# angle = geoutil.calculate_bearing(centroid, p) | |
# p2 = (p[0], p[1], angle) | |
# if direction in geo_level1.east: | |
# if angle >= minimum or angle <= maximum: | |
# direction_coordinates.append(p2) | |
# | |
# else: | |
# if angle >= minimum and angle <= maximum: | |
# direction_coordinates.append(p2) | |
# # print(type(direction_coordinates[0])) | |
# # if(direction in geo_level1.west): | |
# # direction_coordinates.sort(key=lambda k: k[2], reverse=True) | |
# | |
# return direction_coordinates | |
# def get_level3(level3): | |
# digits = re.findall('[0-9]+', level3)[0] | |
# unit = re.findall('[A-Za-z]+', level3)[0] | |
# return digits, unit | |
# | |
# def get_direction_coordinates(coordinates, centroid, level1): | |
# min_max = geo_level1.get_min_max(level1) | |
# if min_max is not None: | |
# coord = get_directional_coordinates_by_angle(coordinates, centroid, level1, min_max[0], min_max[1]) | |
# return coord | |
# return coordinates | |
# def sort_west(poly1, poly2, centroid): | |
# coords1 = mapping(poly1)["features"][0]["geometry"]["coordinates"] | |
# coords2 = mapping(poly2)["features"][0]["geometry"]["coordinates"] | |
# coord1 = [] | |
# coord2 = [] | |
# coord = [] | |
# for c in coords1: | |
# pol = list(c[::-1]) | |
# coord1.extend(pol) | |
# for c in coords2: | |
# pol = list(c[::-1]) | |
# coord2.extend(pol) | |
# coo1 = [] | |
# coo2 = [] | |
# for p in coord1: | |
# angle = geoutil.calculate_bearing(centroid, p) | |
# if angle >= 157 and angle <= 202: | |
# coo1.append((p[0], p[1], angle)) | |
# for p in coord2: | |
# angle = geoutil.calculate_bearing(centroid, p) | |
# if angle >= 157 and angle <= 202: | |
# coo2.append((p[0], p[1], angle)) | |
# coo1.extend(coo2) | |
# return coo1 | |
# | |
# | |
# def get_level3_coordinates(coordinates, level_3, level1): | |
# distance, unit = get_level3(level_3) | |
# kms = geoutil.get_kilometers(distance, unit) | |
# coord = [] | |
# | |
# coords0, center = coordinates | |
# | |
# if not isinstance(coords0, list) or len(coords0) < 3: | |
# | |
# # 从原始点出发,根据方向移动距离 kms 得到新圆心 | |
# lat_km = 111.32 | |
# lon_km = 111.32 * np.cos(np.radians(center[1])) | |
# | |
# dx = dy = 0 | |
# | |
# if level1 is not None: | |
# if level1 in geo_level1.east: | |
# dx = kms / lon_km | |
# elif level1 in geo_level1.west: | |
# dx = -kms / lon_km | |
# elif level1 in geo_level1.north: | |
# dy = kms / lat_km | |
# elif level1 in geo_level1.south: | |
# dy = -kms / lat_km | |
# # 你也可以支持 northeast、southwest 等复合方向 | |
# | |
# new_center = (center[0] + dx, center[1] + dy) | |
# | |
# # 用固定半径画个圆(例如半径2km) | |
# r_km = 1 # 半径设为1km,你也可以设为其他值 | |
# | |
# circle_points = [] | |
# for theta in np.linspace(0, 360, num=100): | |
# theta_rad = np.radians(theta) | |
# d_lat = (np.sin(theta_rad) * r_km) / lat_km | |
# d_lon = (np.cos(theta_rad) * r_km) / lon_km | |
# circle_points.append((new_center[0] + d_lon, new_center[1] + d_lat)) | |
# | |
# # 输出中心(使用新圆心) | |
# if circle_points: | |
# center_point = MultiPoint(circle_points).centroid | |
# center = (center_point.x, center_point.y) | |
# else: | |
# center = new_center | |
# | |
# return circle_points, center | |
# | |
# # 正常 polygon 流程 | |
# poly1 = Polygon(coords0) | |
# polygon1 = gpd.GeoSeries(poly1) | |
# | |
# # 生成环形区域 | |
# poly2 = polygon1.buffer(0.0095 * kms, join_style=2) | |
# poly3 = polygon1.buffer(0.013 * kms, join_style=2) | |
# poly = poly3.difference(poly2) | |
# | |
# # 获取坐标 | |
# coords = mapping(poly)["features"][0]["geometry"]["coordinates"] | |
# for c in coords: | |
# pol = list(c[::-1]) | |
# coord.extend(pol) | |
# | |
# # 方向裁剪 | |
# if level1 is not None: | |
# coord = get_direction_coordinates(coord, coordinates[1], level1) | |
# if level1 in geo_level1.west: | |
# coord = sort_west(poly3, poly2, coordinates[1]) | |
# | |
# # 计算质心 | |
# if coord: | |
# center_point = MultiPoint(coord).centroid | |
# center = (center_point.x, center_point.y) | |
# else: | |
# center = coordinates[1] | |
# | |
# return coord, center | |
# # level 3 end | |
# | |
# # between | |
# def get_between_coordinates(coordinates1, coordinates2): | |
# """ | |
# 计算两个区域之间的中间点,并生成一个等面积的圆形区域。 | |
# 如果某个输入仅为点(坐标长度 < 3),则其面积设为 0; | |
# 如果两个输入都是点,则默认半径为 2km。 | |
# :param coordinates1: 第一个区域的边界坐标和中心点 | |
# :param coordinates2: 第二个区域的边界坐标和中心点 | |
# :return: 圆形区域的坐标集和圆心 | |
# """ | |
# | |
# def is_valid_polygon(coords): | |
# return isinstance(coords, list) and len(coords) >= 3 | |
# | |
# coords1, center1 = coordinates1 | |
# coords2, center2 = coordinates2 | |
# | |
# # 判断输入是否为合法多边形(>=3个点) | |
# if is_valid_polygon(coords1): | |
# poly1 = Polygon(coords1) | |
# area1 = poly1.area | |
# else: | |
# area1 = 0 | |
# | |
# if is_valid_polygon(coords2): | |
# poly2 = Polygon(coords2) | |
# area2 = poly2.area | |
# else: | |
# area2 = 0 | |
# | |
# # 计算中心点(两个中心的中点) | |
# midpoint = ( | |
# (center1[0] + center2[0]) / 2, | |
# (center1[1] + center2[1]) / 2 | |
# ) | |
# | |
# # 如果两个区域都是点,则使用默认半径 2km | |
# if area1 == 0 and area2 == 0: | |
# r_km = 2 | |
# else: | |
# avg_area = (area1 + area2) / 2 | |
# r_km = np.sqrt(avg_area / np.pi) * 111.32 # 近似 km 半径 | |
# | |
# # 经纬度距离换算因子 | |
# lat_km = 111.32 | |
# lon_km = 111.32 * np.cos(np.radians(midpoint[1])) | |
# | |
# # 生成圆形区域坐标(100个点) | |
# circle_points = [] | |
# for theta in np.linspace(0, 360, num=100): | |
# theta_rad = np.radians(theta) | |
# d_lat = (np.sin(theta_rad) * r_km) / lat_km | |
# d_lon = (np.cos(theta_rad) * r_km) / lon_km | |
# circle_points.append((midpoint[0] + d_lon, midpoint[1] + d_lat)) | |
# | |
# return circle_points, midpoint | |
# # between end | |
# | |
# | |
# def llmapi(text): | |
# system_prompt = ( | |
# "你是一个资深的地理学家,你的任务是通过给定的一段自然语言,来选择正确的定位函数顺序以及他们的输入。\n" | |
# "你能选择的定位函数有:\n" | |
# "1. 相对定位(Relative Positioning):输入为地点坐标,方位,距离。输出为距离‘距离’输入的地点坐标的‘方位’的坐标。\n" | |
# "2. 中间定位(Between Positioning):输入为两个地点的坐标,输出为两个地点坐标的中点。\n" | |
# "请先进行思维链(CoT)推理,并最终用 JSON 格式输出你的答案,用 `<<<JSON>>>` 和 `<<<END>>>` 包裹起来。\n" | |
# "请确保所有输入仅包含:地点名称(字符串)、索引(整数)、方位(字符串,必须是英文)或距离(字符串,带单位),不允许返回诸如 'Chatswood 南4 km的坐标' 这样的内容。\n" | |
# "每个步骤编号都有 id 记录,然后如果某个输入是之前步骤的输出,那么输入对应步骤的 id。\n" | |
# "所有方向必须使用英文(如 south, west, northeast, etc.)。\n" | |
# "示例输出:\n" | |
# "<<<JSON>>>\n" | |
# "[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]}," | |
# "{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]}," | |
# "{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]}," | |
# "{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n" | |
# "<<<END>>>") | |
# | |
# messages = [ | |
# {"role": "system", "content": system_prompt}, | |
# {"role": "user", "content": text}, | |
# ] | |
# | |
# chat_completion = client.chat.completions.create( | |
# messages=messages, | |
# model=model, | |
# ) | |
# | |
# result = chat_completion.choices[0].message.content | |
# json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL) | |
# | |
# if json_match: | |
# # print(json.loads(json_match.group(1))) | |
# return json.loads(json_match.group(1)) | |
# else: | |
# raise ValueError("LLM 输出未包含预期的 JSON 格式数据。") | |
# def llmapi(text): | |
# system_prompt = ( | |
# "You are an experienced geographer. Your task is to determine the correct sequence of positioning functions and their inputs based on a given piece of natural language.\n" | |
# "The positioning functions you can choose from are:\n" | |
# "1. Relative Positioning: Inputs is (location coordinate or location name, direction, and distance). Outputs the coordinates that are in the given 'direction' and 'distance' from the input location.\n" | |
# "2. Between Positioning: Inputs is (location 1 coordinates or location 1 name, location 2 coordinates or location 2 name). Outputs the midpoint coordinate between the two locations.\n" | |
# "You can only use the given functions, and the inputs to the functions must obey the above properties. The given functions can be combined to solve complex situations." | |
# "First, perform chain-of-thought (CoT) reasoning, and finally output your answer in JSON format, wrapped between `<<<JSON>>>` and `<<<END>>>`.\n" | |
# "Make sure all inputs only include: location names (strings), step indices (integers), directions (strings, must be in English), or distances (strings with units). Do not return expressions like 'the coordinate 4 km south of Chatswood'.\n" | |
# "Each step must have an 'id'. If the input of a step is the output of a previous step, use that step’s 'id' as the input.\n" | |
# "All directions must be in English (e.g., south, west, northeast, etc.).\n" | |
# "Example output:\n" | |
# "<<<JSON>>>\n" | |
# "[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]}," | |
# "{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]}," | |
# "{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]}," | |
# "{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n" | |
# "<<<END>>>") | |
# | |
# messages = [ | |
# {"role": "system", "content": system_prompt}, | |
# {"role": "user", "content": text}, | |
# ] | |
# | |
# chat_completion = client.chat.completions.create( | |
# messages=messages, | |
# model=model, | |
# ) | |
# | |
# result = chat_completion.choices[0].message.content | |
# print(result) | |
# json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL) | |
# | |
# if json_match: | |
# return json.loads(json_match.group(1)) | |
# else: | |
# raise ValueError("LLM 输出未包含预期的 JSON 格式数据。") | |
# | |
# | |
# | |
# | |
# | |
# def execute_steps(steps): | |
# data = {} | |
# | |
# for step in steps: | |
# step_id = step['id'] | |
# function = step['function'] | |
# inputs = step['inputs'] | |
# # print('-' * 50) | |
# # print(function) | |
# # print(inputs) | |
# | |
# | |
# resolved_inputs = [] | |
# for inp in inputs: | |
# if isinstance(inp, int): | |
# resolved_inputs.append(data[inp]) | |
# else: | |
# resolved_inputs.append(inp) | |
# if function == "Relative": | |
# location, direction, distance = resolved_inputs | |
# if isinstance(location, str): | |
# location = get_coordinates(location) | |
# | |
# location = [to_standard_2d_list(location[0])] + list(location[1:]) | |
# location = [[[151.214901,-33.859175]], (151.214901,-33.859175)] | |
# result = get_level3_coordinates(location, distance, direction) | |
# data[step_id] = result | |
# | |
# elif function == "Between": | |
# | |
# | |
# location1, location2 = resolved_inputs | |
# # print(location1) | |
# # print(111) | |
# # print(location2) | |
# if isinstance(location1, str): | |
# location1 = get_coordinates(location1) | |
# | |
# location1 = [to_standard_2d_list(location1[0])] + list(location1[1:]) | |
# if isinstance(location2, str): | |
# | |
# location2 = get_coordinates(location2) | |
# location2 = [to_standard_2d_list(location2[0])] + list(location2[1:]) | |
# result = get_between_coordinates(location1, location2) | |
# | |
# data[step_id] = result | |
# | |
# return data | |
# | |
# | |
# | |
# if __name__ == '__main__': | |
# # a = get_coordinates('Burwood') | |
# # a2 = get_coordinates('Glebe') | |
# # b = get_level3_coordinates(a, '5 km', 'east') | |
# # c = get_between_coordinates(a, a2) | |
# | |
# # 完整通道 | |
# # 默认输入 | |
# # default_input_text = "在Chatswood南边4公里与North Sydney 东边2公里的中间的西南5公里。" | |
# # default_input_text = "你是一位规划师,正在为华盛顿州的一项新森林监测站选址。两个潜在的参考位置分别是雷尼尔山国家公园(Mount Rainier National Park)和北喀斯喀特国家公园(North Cascades National Park)。首先,你想在这两个国家公园之间找到一个中间点。接着,你希望在这个中间点与北喀斯喀特国家公园之间,再取一个中间位置,以便确定最终的建设候选地。" | |
# # default_input_text = "在Chatswood和North Sydney的中间靠近North Sydney的四分之一位置" | |
# # default_input_text = "Plan a trip that involves determining the midpoint between Paris and London, and then finding another midpoint between this location and Paris to identify potential stopovers during travel." | |
# # default_input_text = "5km southwest of Chatswood, 4km south of Chatswood and 2km north of North Sydney." | |
# | |
# | |
# | |
# # 解析 LLM 结果 | |
# # parsed_steps = llmapi(default_input_text) | |
# # parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Chatswood', 'south', '4 km']}, {'id': 2, 'function': 'Relative', 'inputs': ['North Sydney', 'east', '2 km']}, {'id': 3, 'function': 'Between', 'inputs': [1, 2]}, {'id': 4, 'function': 'Relative', 'inputs': [3, 'south west', '5 km']}] | |
# # parsed_steps = [{"id": 1, "function": "Between", "inputs": ["Chatswood", "North Sydney"]},{"id": 2, "function": "Between", "inputs": [1, "North Sydney"]}] | |
# # parsed_steps = [{"id": 1, "function": "Relative", "inputs": ["Katoomba", "southeast", "3 km"]}, {"id": 2, "function": "Between", "inputs": [1, "Echo Point"]}] | |
# # parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Scafell Pike', 'east', '9 km']}] | |
# # parsed_steps = [{'id': 1, 'function': 'Relative', 'inputs': ['Colosseum', 'northeast', '8 km']}, {'id': 2, 'function': 'Relative', 'inputs': [1, 'northeast', '2 km']}] | |
# parsed_steps = [ | |
# {"id": 1, "function": "Between", "inputs": ["Statue of Liberty", "Eiffel Tower"]}, | |
# {"id": 2, "function": "Relative", "inputs": [1, "west", "8 km"]} | |
# ] | |
# | |
# # 执行步骤 | |
# result = execute_steps(parsed_steps) | |
# # 输出最终计算结果 | |
# print(result) | |
# print('-' * 100) | |
# print(result[(max(result.keys()))][0]) | |
# # 通道结束 | |
# | |
# # location = get_coordinates('Chatswood') | |
# # result = get_level3_coordinates(location, '4 km', 'north west') | |
# # print(result) | |
# | |
# | |