SpatialParse / 提取测试.py
Shunfeng Zheng
Upload 89 files
17e77ea verified
raw
history blame
7.96 kB
import math
import streamlit as st
from utils import geoutil
import pickle
def update_entities(doc, entity_texts, replace=True):
"""
根据给定的文本内容标注实体,并直接修改 doc.ents。
:param doc: spaCy 解析后的 Doc 对象
:param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别
:param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的
"""
new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体
for ent_text, ent_label in entity_texts.items():
start = doc.text.find(ent_text) # 在全文中查找文本位置
if start != -1:
start_token = len(doc.text[:start].split()) # 计算起始 token 索引
end_token = start_token + len(ent_text.split()) # 计算结束 token 索引
if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界
new_ent = Span(doc, start_token, end_token, label=ent_label)
new_ents.append(new_ent)
doc.set_ents(new_ents) # 更新 doc.ents
# def midpoint(x1, y1, x2, y2, angle):
def midpoint(y1, x1, y2, x2, angle):
lonA = math.radians(y1)
lonB = math.radians(y2)
latA = math.radians(x1)
latB = math.radians(x2)
dLon = lonB - lonA
Bx = math.cos(latB) * math.cos(dLon)
By = math.cos(latB) * math.sin(dLon)
latC = math.atan2(math.sin(latA) + math.sin(latB),
math.sqrt((math.cos(latA) + Bx) * (math.cos(latA) + Bx) + By * By))
lonC = lonA + math.atan2(By, math.cos(latA) + Bx)
lonC = (lonC + 3 * math.pi) % (2 * math.pi) - math.pi
latitude = round(math.degrees(latC), 8)
longitude = round(math.degrees(lonC) ,8)
return [longitude, latitude, angle
]
def get_midmid_point(centroid, point1, point2, is_midmid):
mid1 = midpoint(centroid[0], centroid[1],
point1[0], point1[1]
, point1[2])
mid2 = midpoint(centroid[0], centroid[1],
point2[0], point2[1],
point2[2])
midmid1 = midpoint(centroid[0], centroid[1],
mid1[0], mid1[1]
, mid1[2])
midmid2 = midpoint(centroid[0], centroid[1],
mid2[0], mid2[1],
mid2[2])
if is_midmid:
return midmid1, midmid2
else:
return mid1, mid2
import spacy
from spacy.language import Language
import regex_spatial
from spacy.tokens import Span, Doc, Token
import re
import llm_ent_extract
rse_id = "rse_id"
def set_extension():
Span.set_extension(rse_id, default="", force=True)
Doc.set_extension(rse_id, default="", force=True)
Token.set_extension(rse_id, default="", force=True)
def find_ent_by_regex(doc, sentence, ent, regex):
global id
if id == "":
id = ent.text
for match in re.finditer(regex, doc.text):
start, end = match.span()
if(start>= sentence.start_char and start<= sentence.end_char):
span = doc.char_span(start, end)
if span is not None:
id = span.text +"_"+ id
if(start > ent.end_char):
ent.end_char = end
else:
ent.start_char = start
return ent
return ent
def get_level1(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex())
def get_level2(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex())
def get_level3(doc, sentence, ent):
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex())
def get_relative_entity(doc, sentence, ent):
global id
id = ""
rel_entity = get_level1(doc, sentence, ent)
rel_entity = get_level2(doc, sentence, rel_entity)
rel_entity = get_level3(doc, sentence, rel_entity)
# print(id)
if ("_" in id):
rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE")
rel_entity._.rse_id = id
return rel_entity
rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_)
rel_entity._.rse_id = id
return rel_entity
@Language.component("spatial_pipeline")
def get_spatial_ent(doc):
set_extension()
new_ents = []
ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"]
# GPE = '[###5###]' # LLM 输出的实体
# GPE = llm_ent_extract.extract(GPE, 'LOC')
#
# update_entities(doc, GPE, True)
# ents = doc.ents
# GPE = llm_ent_extract.extract(llm_ent_extract.extract_GPE(doc.text), 'gpe')
# update_entities(doc, GPE)
end = None
for ent in ents:
if ent.end != len(doc):
next_token = doc[ent.end] # 怀疑多加了一个索引。Between Burwood and Pyrmont city. 分别是Pyrmont 和 .
if end is not None: # end 在4次循环中是0,2,5,8
start = end
else:
start = ent.sent.start # 似乎永远都是0
if next_token.text.lower() in regex_spatial.get_keywords():
end = next_token.i
else:
end = ent.end
rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent)
# print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id, '```')
new_ents.append(rsi_ent)
doc.ents = new_ents
return doc
gpe_selected = "GPE"
loc_selected = "LOC"
rse_selected = "RSE"
def set_selected_entities(doc):
global gpe_selected, loc_selected, rse_selected
ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected]
doc.ents = ents
return doc
# text = 'Sydney is 6 kilometres to the east.'
def extract_spatial_entities(text):
nlp = spacy.load("en_core_web_md") #####
# nlp.add_pipe("spatial_pipeline", after="ner")
doc = nlp(text)
nlp.add_pipe("spatial_pipeline", after="ner")
# 分句处理
sent_ents = []
sent_texts = []
offset = 0 # 记录当前 token 偏移量
for sent in doc.sents:
sent_doc = nlp(sent.text) # 逐句处理
sent_doc = set_selected_entities(sent_doc) # 这里处理实体
sent_texts.append(sent_doc.text)
# **调整每个实体的索引,使其匹配完整文本**
for ent in sent_doc.ents:
new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_)
sent_ents.append(new_ent)
offset += len(sent) # 更新偏移量
# **创建新 Doc**
final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc])
# **设置实体**
final_doc.set_ents(sent_ents)
# 分句处理完毕
print('-' * 50)
# print(doc.text)
# print(doc.ents)
# print("修改后实体:", [(ent.text, ent.label_) for ent in doc.ents])
print("修改后实体:", [(ent.text, ent.label_) for ent in final_doc.ents])
# print(doc.ents[0]._.rse_id, 'final_entO')
# print(final_doc.ents[0]._.rse_id, 'final_entO')
final_doc.ents[0]._.rse_id = '11'
print(final_doc.ents[0]._.rse_id, 'final_entO')
print(final_doc.ents[0].sent, 'final_entO')
# # print(doc.sents)
final_doc.to_disk("saved_doc.spacy")
print("Doc saved successfully!")
text = 'Between Burwood and Pyrmont. Between Burwood and Pyrmont city.'
text = 'Between Burwood and Pyrmont.'
text = "New York is north of Washington. Between Burwood and Pyrmont city."
text = "5 km east of Burwood."
extract_spatial_entities(text)
nlp = spacy.load("en_core_web_md")
doc = Doc(nlp.vocab).from_disk("saved_doc.spacy")
print("修改后实体:", [(ent.text, ent.label_) for ent in doc.ents])
print(doc.ents[0]._.rse_id, 'final_entO')
# print(doc.ents[0].sent, 'final_entO')