Spaces:
Runtime error
Runtime error
import math | |
import streamlit as st | |
from utils import geoutil | |
import pickle | |
def update_entities(doc, entity_texts, replace=True): | |
""" | |
根据给定的文本内容标注实体,并直接修改 doc.ents。 | |
:param doc: spaCy 解析后的 Doc 对象 | |
:param entity_texts: 字典,键是要标注的实体文本,值是对应的实体类别 | |
:param replace: 布尔值,True 则替换现有实体,False 则保留现有实体并添加新的 | |
""" | |
new_ents = list(doc.ents) if not replace else [] # 如果 replace=False,保留已有实体 | |
for ent_text, ent_label in entity_texts.items(): | |
start = doc.text.find(ent_text) # 在全文中查找文本位置 | |
if start != -1: | |
start_token = len(doc.text[:start].split()) # 计算起始 token 索引 | |
end_token = start_token + len(ent_text.split()) # 计算结束 token 索引 | |
if start_token < len(doc) and end_token <= len(doc): # 确保索引不越界 | |
new_ent = Span(doc, start_token, end_token, label=ent_label) | |
new_ents.append(new_ent) | |
doc.set_ents(new_ents) # 更新 doc.ents | |
# def midpoint(x1, y1, x2, y2, angle): | |
def midpoint(y1, x1, y2, x2, angle): | |
lonA = math.radians(y1) | |
lonB = math.radians(y2) | |
latA = math.radians(x1) | |
latB = math.radians(x2) | |
dLon = lonB - lonA | |
Bx = math.cos(latB) * math.cos(dLon) | |
By = math.cos(latB) * math.sin(dLon) | |
latC = math.atan2(math.sin(latA) + math.sin(latB), | |
math.sqrt((math.cos(latA) + Bx) * (math.cos(latA) + Bx) + By * By)) | |
lonC = lonA + math.atan2(By, math.cos(latA) + Bx) | |
lonC = (lonC + 3 * math.pi) % (2 * math.pi) - math.pi | |
latitude = round(math.degrees(latC), 8) | |
longitude = round(math.degrees(lonC) ,8) | |
return [longitude, latitude, angle | |
] | |
def get_midmid_point(centroid, point1, point2, is_midmid): | |
mid1 = midpoint(centroid[0], centroid[1], | |
point1[0], point1[1] | |
, point1[2]) | |
mid2 = midpoint(centroid[0], centroid[1], | |
point2[0], point2[1], | |
point2[2]) | |
midmid1 = midpoint(centroid[0], centroid[1], | |
mid1[0], mid1[1] | |
, mid1[2]) | |
midmid2 = midpoint(centroid[0], centroid[1], | |
mid2[0], mid2[1], | |
mid2[2]) | |
if is_midmid: | |
return midmid1, midmid2 | |
else: | |
return mid1, mid2 | |
import spacy | |
from spacy.language import Language | |
import regex_spatial | |
from spacy.tokens import Span, Doc, Token | |
import re | |
import llm_ent_extract | |
rse_id = "rse_id" | |
def set_extension(): | |
Span.set_extension(rse_id, default="", force=True) | |
Doc.set_extension(rse_id, default="", force=True) | |
Token.set_extension(rse_id, default="", force=True) | |
def find_ent_by_regex(doc, sentence, ent, regex): | |
global id | |
if id == "": | |
id = ent.text | |
for match in re.finditer(regex, doc.text): | |
start, end = match.span() | |
if(start>= sentence.start_char and start<= sentence.end_char): | |
span = doc.char_span(start, end) | |
if span is not None: | |
id = span.text +"_"+ id | |
if(start > ent.end_char): | |
ent.end_char = end | |
else: | |
ent.start_char = start | |
return ent | |
return ent | |
def get_level1(doc, sentence, ent): | |
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level1_regex()) | |
def get_level2(doc, sentence, ent): | |
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level2_regex()) | |
def get_level3(doc, sentence, ent): | |
return find_ent_by_regex(doc, sentence, ent, regex_spatial.get_level3_regex()) | |
def get_relative_entity(doc, sentence, ent): | |
global id | |
id = "" | |
rel_entity = get_level1(doc, sentence, ent) | |
rel_entity = get_level2(doc, sentence, rel_entity) | |
rel_entity = get_level3(doc, sentence, rel_entity) | |
# print(id) | |
if ("_" in id): | |
rel_entity = doc.char_span(rel_entity.start_char, rel_entity.end_char, "RSE") | |
rel_entity._.rse_id = id | |
return rel_entity | |
rel_entity = doc.char_span(ent.start_char, ent.end_char, ent.label_) | |
rel_entity._.rse_id = id | |
return rel_entity | |
def get_spatial_ent(doc): | |
set_extension() | |
new_ents = [] | |
ents = [ent for ent in doc.ents if ent.label_ == "GPE" or ent.label_ == "LOC"] | |
# GPE = '[###5###]' # LLM 输出的实体 | |
# GPE = llm_ent_extract.extract(GPE, 'LOC') | |
# | |
# update_entities(doc, GPE, True) | |
# ents = doc.ents | |
# GPE = llm_ent_extract.extract(llm_ent_extract.extract_GPE(doc.text), 'gpe') | |
# update_entities(doc, GPE) | |
end = None | |
for ent in ents: | |
if ent.end != len(doc): | |
next_token = doc[ent.end] # 怀疑多加了一个索引。Between Burwood and Pyrmont city. 分别是Pyrmont 和 . | |
if end is not None: # end 在4次循环中是0,2,5,8 | |
start = end | |
else: | |
start = ent.sent.start # 似乎永远都是0 | |
if next_token.text.lower() in regex_spatial.get_keywords(): | |
end = next_token.i | |
else: | |
end = ent.end | |
rsi_ent = get_relative_entity(doc,Span(doc, start, end), ent) | |
# print(rsi_ent.text, rsi_ent.label_, rsi_ent._.rse_id, '```') | |
new_ents.append(rsi_ent) | |
doc.ents = new_ents | |
return doc | |
gpe_selected = "GPE" | |
loc_selected = "LOC" | |
rse_selected = "RSE" | |
def set_selected_entities(doc): | |
global gpe_selected, loc_selected, rse_selected | |
ents = [ent for ent in doc.ents if ent.label_ == gpe_selected or ent.label_ == loc_selected or ent.label_ == rse_selected] | |
doc.ents = ents | |
return doc | |
# text = 'Sydney is 6 kilometres to the east.' | |
def extract_spatial_entities(text): | |
nlp = spacy.load("en_core_web_md") ##### | |
# nlp.add_pipe("spatial_pipeline", after="ner") | |
doc = nlp(text) | |
nlp.add_pipe("spatial_pipeline", after="ner") | |
# 分句处理 | |
sent_ents = [] | |
sent_texts = [] | |
offset = 0 # 记录当前 token 偏移量 | |
for sent in doc.sents: | |
sent_doc = nlp(sent.text) # 逐句处理 | |
sent_doc = set_selected_entities(sent_doc) # 这里处理实体 | |
sent_texts.append(sent_doc.text) | |
# **调整每个实体的索引,使其匹配完整文本** | |
for ent in sent_doc.ents: | |
new_ent = Span(doc, ent.start + offset, ent.end + offset, label=ent.label_) | |
sent_ents.append(new_ent) | |
offset += len(sent) # 更新偏移量 | |
# **创建新 Doc** | |
final_doc = Doc(nlp.vocab, words=[token.text for token in doc], spaces=[token.whitespace_ for token in doc]) | |
# **设置实体** | |
final_doc.set_ents(sent_ents) | |
# 分句处理完毕 | |
print('-' * 50) | |
# print(doc.text) | |
# print(doc.ents) | |
# print("修改后实体:", [(ent.text, ent.label_) for ent in doc.ents]) | |
print("修改后实体:", [(ent.text, ent.label_) for ent in final_doc.ents]) | |
# print(doc.ents[0]._.rse_id, 'final_entO') | |
# print(final_doc.ents[0]._.rse_id, 'final_entO') | |
final_doc.ents[0]._.rse_id = '11' | |
print(final_doc.ents[0]._.rse_id, 'final_entO') | |
print(final_doc.ents[0].sent, 'final_entO') | |
# # print(doc.sents) | |
final_doc.to_disk("saved_doc.spacy") | |
print("Doc saved successfully!") | |
text = 'Between Burwood and Pyrmont. Between Burwood and Pyrmont city.' | |
text = 'Between Burwood and Pyrmont.' | |
text = "New York is north of Washington. Between Burwood and Pyrmont city." | |
text = "5 km east of Burwood." | |
extract_spatial_entities(text) | |
nlp = spacy.load("en_core_web_md") | |
doc = Doc(nlp.vocab).from_disk("saved_doc.spacy") | |
print("修改后实体:", [(ent.text, ent.label_) for ent in doc.ents]) | |
print(doc.ents[0]._.rse_id, 'final_entO') | |
# print(doc.ents[0].sent, 'final_entO') | |