File size: 1,181 Bytes
ded7c37
7d707d7
64daaee
11a5c67
7681731
64daaee
7d707d7
ded7c37
 
7681731
 
 
ded7c37
 
64daaee
ded7c37
 
 
 
1d49548
ded7c37
a8939bc
ded7c37
 
 
 
64daaee
ded7c37
64daaee
 
 
 
 
ded7c37
a8939bc
64daaee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import requests
import os

API_TOKEN = os.getenv("HF_API_TOKEN")
BACKEND_URL = "https://your-backend-url/api/predict/"  # 替换为你的后端地址

def call_backend(input_text):
    try:
        headers = {
            "Authorization": f"Bearer {API_TOKEN}"
        }
        response = requests.post(
            BACKEND_URL,
            headers=headers,
            json={"data": [input_text]},
            timeout=10
        )
        if response.status_code == 200:
            result = response.json()["data"][0]
            return f"✅ {result['result']}\n⏰ {result['timestamp']}"
        return f"❌ Backend Error (HTTP {response.status_code})"
    except Exception as e:
        return f"⚠️ Connection Error: {str(e)}"

with gr.Blocks() as demo:
    gr.Markdown("## 地理信息识别系统")
    with gr.Row():
        input_box = gr.Textbox(label="输入描述文本")
        output_box = gr.Textbox(label="识别结果", interactive=False)
    submit_btn = gr.Button("提交")

    submit_btn.click(fn=call_backend, inputs=input_box, outputs=output_box)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)